首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
化学   13篇
  2020年   2篇
  2019年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds.  相似文献   
12.
The absorption and fluorescence spectra of firefly luciferin, which is an analog of oxyluciferin, are investigated by performing the density functional theory (DFT) calculations, especially focusing on the experimentally unassigned peaks. Time-dependent DFT calculations are performed for the excited states of firefly luciferin and its conjugate acids and bases. We find that (1) the peaks in the experimental absorption spectra correspond to the excited states of not only (6'O(-), 4COO(-)) and (6'OH, 4COO(-)), but also (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (2) the peaks in the experimental fluorescence spectra correspond to the excited states of not only (6'O(-), 4COO(-)), but also (6'OH, 4COO(-)), (6'O(-), 4COOH), (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (3) the unassigned peak near 400 nm in the experimental absorption spectra at pH 1 is assigned to the absorption from the equilibrium ground state to the first excited state of (6'OH, 3H(+), 4COOH); and (4) the unassigned peak at 610 nm in the experimental fluorescence spectra corresponds to the transition from the equilibrium first excited state to the ground state of (6'OH, 4COO(-)).  相似文献   
13.
The equilibrium structures and optical properties of the photolabile caged luciferin, (7-diethylaminocoumarin-4-yl)methyl caged D-luciferin (DEACM-caged D-luciferin), in aqueous solution were investigated via quantum chemical calculations. The probable conformers of DEACM-caged D-luciferin were determined by potential energy curve scans and structural optimizations. We identified 40 possible conformers of DEACM-caged D-luciferin in water by comparing the Gibbs free energy of the optimized structures. Despite the difference in their structures, the conformers were similar in terms of assignments, oscillator strengths and energies of the three low-lying excited states. From the concentrations of the conformers and their oscillator strengths, we obtained a theoretical UV/Vis spectrum of DEACM-caged D-luciferin that has two main bands of shape nearly identical to the experimental UV/Vis spectrum. The absorption bands with maxima ~ 384 and 339 nm were attributed to the electronic excitations of the caged group and the luciferin moiety, respectively, by analysis of the theoretical UV/Vis spectrum. Furthermore, the analysis showed that DEACM-caged D-luciferin is excited in the caged group only by light of wavelength ranging within 400–430 nm, which is in the long-wavelength tail of the 384 nm band. This should be tested to lower damage upon photocleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号