首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   19篇
  国内免费   2篇
化学   469篇
晶体学   8篇
力学   7篇
数学   25篇
物理学   91篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2016年   13篇
  2015年   13篇
  2014年   11篇
  2013年   25篇
  2012年   23篇
  2011年   28篇
  2010年   17篇
  2009年   17篇
  2008年   34篇
  2007年   32篇
  2006年   35篇
  2005年   39篇
  2004年   34篇
  2003年   25篇
  2002年   13篇
  2001年   24篇
  2000年   9篇
  1999年   10篇
  1998年   7篇
  1997年   9篇
  1996年   7篇
  1995年   4篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   11篇
  1984年   7篇
  1983年   7篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   13篇
  1977年   6篇
  1976年   5篇
  1975年   11篇
  1974年   7篇
  1973年   2篇
  1971年   2篇
排序方式: 共有600条查询结果,搜索用时 15 毫秒
61.
Polyhydroxyalkanoate (PHA) synthase (PhaC) from Wautersia eutropha was expressed in a wide range of production level in Escherichia coli XL1-Blue cells and its effects on PhaC activity, poly[(R)-3-hydroxybutyrate] [P(3HB)] production and its molecular weights were investigated. The production level of PhaC was controlled both by the amount of chemical inducer (isopropyl-β-d-thiogalactopyranoside, IPTG) added into the medium and the use of different copy number of plasmids. In a flask experiment, as PhaC production level in the cells increased, the PhaC activity also increased in the range of low PhaC concentration. However, PhaC activity did not further increase in the range of high PhaC concentration, probably due to the formation of inclusion body in the cells. The molecular weight of P(3HB) was found to decrease with increasing PhaC activity. This trend was also verified in high cell density cultivation using 10-l jar fermentor. Furthermore, we demonstrated that the use of low copy number plasmid and appropriate induction of PhaC expression were effective in achieving both high productivity and high molecular weight of P(3HB).  相似文献   
62.
Environmentally friendly iron(II) catalysts for atom‐transfer radical polymerization (ATRP) were synthesized by careful selection of the nitrogen substituents of N,N,N‐trialkylated‐1,4,9‐triazacyclononane (R3TACN) ligands. Two types of structures were confirmed by crystallography: “[(R3TACN)FeX2]” complexes with relatively small R groups have ionic and dinuclear structures including a [(R3TACN)Fe(μ‐X)3Fe(R3TACN)]+ moiety, whereas those with more bulky R groups are neutral and mononuclear. The twelve [(R3TACN)FeX2]n complexes that were synthesized were subjected to bulk ATRP of styrene, methyl methacrylate (MMA), and butyl acrylate (BA). Among the iron complexes examined, [{(cyclopentyl)3TACN}FeBr2] ( 4 b ) was the best catalyst for the well‐controlled ATRP of all three monomers. This species allowed easy catalyst separation and recycling, a lowering of the catalyst concentration needed for the reaction, and the absence of additional reducing reagents. The lowest catalyst loading was accomplished in the ATRP of MMA with 4 b (59 ppm of Fe based on the charged monomer). Catalyst recycling in ATRP with low catalyst loadings was also successful. The ATRP of styrene with 4 b (117 ppm Fe atom) was followed by precipitation from methanol to give polystyrene that contained residual iron below the calculated detection limit (0.28 ppm). Mechanisms that involve equilibria between the multinuclear and mononuclear species were also examined.  相似文献   
63.
An asymmetric total synthesis of ent‐pyripyropene A was achieved by a convergent synthetic route. We used our originally developed TiIII‐catalyzed radical cyclization to construct an AB‐ring portion that consisted of a trans‐decalin skeleton with five contiguous stereogenic centers. The coupling between the AB‐ring and the DE‐ring portions, and a subsequent C‐ring cyclization, led to the total synthesis of ent‐pyripyropene A. An evaluation of the insecticidal activity of ent‐pyripyropene A against two aphid species revealed that ent‐pyripyropene A was 35–175 times less active than naturally occurring pyripyropene A. This result indicated that the biological target of pyripyropene A recognizes the absolute configuration of pyripyropene A.  相似文献   
64.
The stereoselective one-pot three-component coupling reaction was accomplished by 1,4-addition of the protected cyanohydrin ether 9f to cyclohexenone 10g and subsequent addition of the resulting enolate to formaldehyde in high yield for the formation of the AC ring system of taxanes. We found that the bulky substituents at the 10-position in the A ring prevent the desired 1,4-addition. Similarly, the bulky trialkylsiloxy groups at the 4-position in the C ring prevent the 1,4-addition and electron-donating alkoxy groups at the same position induce the undesired retro-Michael reaction.  相似文献   
65.
We describe here the first case of the finding of xanthoanthrafil, a phosphodiesterase-5 inhibitor, in a dietary supplement. A methanol extract of the supplement product was first analyzed by TLC and HPLC. The results indicated that the extract contained an unknown compound. The molecular weight of the compound was 389 and the accurate mass showed its elemental composition to be C(19)H(23)N(3)O(6). Combined with this data, NMR analysis revealed the planar structure of the unknown compound to be N-(3,4-dimethoxybenzyl)-2-(1-hydroxypropan-2-ylamino)-5-nitrobenzamide. The R-configuration of this compound had been synthesized as a phosphodiesterase-5 inhibitor, formerly reported as FR226807 by Fujisawa Pharmaceutical Co., Ltd. The absolute configuration of the isolated compound was estimated to have R-configuration by its optical rotation. Considering its general properties, this compound is renamed as (R)-xanthoanthrafil with the agreement of Astellas Pharma Inc. which is the successor of Fujisawa Pharmaceutical Co., Ltd. Quantitative analysis revealed that the content of (R)-xanthoanthrafil in the product was about 31 mg/capsule.  相似文献   
66.
Reactions of [Ni(tren)(H(2)O)(2)]X(2) (tren = tris(2-aminoethyl)amine; X = Cl (1a), Br (1b); X(2) = SO(4) (1c)) with mannose-type aldoses, having a 2,3-cis configuration (D-mannose and L-rhamnose), afforded {bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine}nickel(II) complexes, [Ni(N,N'-(aldosyl)(2)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (2a), Br (2b), X(2) = SO(4) (2c); aldosyl = L-rhamnosyl, X(2) = SO(4) (3c)). The structure of 1c was confirmed by X-ray crystallography to be a mononuclear [Ni(II)N(4)O(2)] complex with the tren acting as a tetradentate ligand (1c.2H(2)O: orthorhombic, Pbca, a = 15.988(2) ?, b = 18.826(4) ?, c = 10.359(4) ?, V = 3118 ?(3), Z = 8, R = 0.047, and R(w) = 0.042). Complexes 2a,c and 3c were characterized by X-ray analyses to have a mononuclear octahedral Ni(II) structure ligated by a hexadentate N-glycoside ligand, bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine (2a.CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 16.005(3) ?, b = 20.095(4) ?, c = 8.361(1) ?, V = 2689 ?(3), Z = 4, R = 0.040, and R(w) = 0.027. 2c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.93(2) ?, b = 21.823(8) ?, c = 9.746(2) ?, V = 3176 ?(3), Z = 4, R = 0.075, and R(w) = 0.080. 3c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.560(4) ?, b = 21.694(5) ?, c = 9.786(2) ?, V = 3091 ?(3), Z = 4, R = 0.072, and R(w) = 0.079). The sugar part of the complex involves novel intramolecular sugar-sugar hydrogen bondings around the metal center. The similar reaction with D-glucose, D-glucosamine, and D-galactosamine, having a 2,3-trans configuration, resulted in the formation of a mono(sugar) complex, [Ni(N-(aldosyl)-tren)(H(2)O)(2)]Cl(2) (aldosyl = D-glucosyl (4b), 2-amino-2-deoxy-D-glucosyl (5a), and 2-amino-2-deoxy-D-galactosyl (5b)), instead of a bis(sugar) complex. The hydrogen bondings between the sugar moieties as observed in 2 and 3 should be responsible for the assembly of two sugar molecules on the metal center. Reactions of tris(N-aldosyl-2-aminoethyl)amine with nickel(II) salts gave the tris(sugar) complexes, [Ni(N,N',N"-(aldosyl)(3)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (6a), Br (6b); L-rhamnosyl, X = Cl (7a), Br (7b); D-glucosyl, X = Cl (9); maltosyl, X = Br (10); and melibiosyl, X = Br (11)), which were assumed to have a shuttle-type C(3) symmetrical structure with Delta helical configuration for D-type aldoses on the basis of circular dichroism and (13)C NMR spectra. When tris(N-rhamnosyl)-tren was reacted with NiSO(4).6H(2)O at low temperature, a labile neutral complex, [Ni(N,N',N"-(L-rhamnosyl)(3)-tren)(SO(4))] (8), was successfully isolated and characterized by X-ray crystallography, in which three sugar moieties are anchored only at the N atom of the C-1 position (8.3CH(3)OH.H(2)O: orthorhombic, P2(1)2(1)2(1), a = 16.035(4) ?, b = 16.670(7) ?, c = 15.38(1) ?, V = 4111 ?(3), Z = 4, R = 0.084, and R(w) = 0.068). Complex 8 could be regarded as an intermediate species toward the C(3) symmetrical tris(sugar) complexes 7, and in fact, it was readily transformed to 7b by an action of BaBr(2).  相似文献   
67.
Ema T  Ouchi N  Doi T  Korenaga T  Sakai T 《Organic letters》2005,7(18):3985-3988
A new type of chiral receptor (R,R)- or (S,S)-1b with C(2) symmetry was synthesized. An induced-fit type of binding behavior of 1b for diamines was revealed by CD spectroscopy. NMR studies demonstrated that 1b can function as a highly sensitive chiral shift reagent for the determination of the enantiomeric purity of chiral diamines, aziridine, and isoxazoline at the microgram level. [structure: see text]  相似文献   
68.
The friction coefficient between the polymer network of an opaque poly(acrylamide) gel and water is measured as a function of the mole fraction of cross linker. The friction coefficients of opaque gels are 4 to 5 orders of magnitude smaller than those of the transparent gels. This drastic decrease in friction occurs when the mole fraction of cross linker is 0.2. In opaque gels, the friction coefficient of gels and the mole fraction of cross linker are related by a power law. The network structure of the opaque gels used in the friction measurements is examined with a confocal laser scanning microscope. The opaque gel network consists of a fractal aggregate of colloidal particles. The radius of particles and the volume occupied by the particles depend on the mole fraction of cross linker. Both relationships are well described by the power laws. The power law of the friction coefficient is well explained in terms of the power laws of the structural parameters and the Stokes equation of the hydrodynamic friction for the spherical particle. It indicates that the friction of the opaque gel is determined simply by the structure of the polymer network.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号