首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   610篇
  免费   35篇
  国内免费   6篇
化学   482篇
力学   7篇
数学   72篇
物理学   90篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   17篇
  2018年   11篇
  2017年   10篇
  2016年   20篇
  2015年   18篇
  2014年   21篇
  2013年   36篇
  2012年   55篇
  2011年   72篇
  2010年   35篇
  2009年   27篇
  2008年   58篇
  2007年   33篇
  2006年   36篇
  2005年   38篇
  2004年   27篇
  2003年   28篇
  2002年   24篇
  2001年   11篇
  2000年   8篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1967年   1篇
  1879年   1篇
排序方式: 共有651条查询结果,搜索用时 218 毫秒
151.
We construct a new equivariant cohomology theory for a certain class of differential vertex algebras, which we call the chiral equivariant cohomology. A principal example of a differential vertex algebra in this class is the chiral de Rham complex of Malikov-Schechtman-Vaintrob of a manifold with a group action. The main idea in this paper is to synthesize the algebraic approach to classical equivariant cohomology due to H. Cartan,2 with the theory of differential vertex algebras, by using an appropriate notion of invariant theory. We also construct the vertex algebra analogues of the Mathai-Quillen isomorphism, the Weil and the Cartan models for equivariant cohomology, and the Chern-Weil map. We give interesting cohomology classes in the new theory that have no classical analogues.  相似文献   
152.
The hollow carbon sphere (HCS) was synthesized using silica particle and sucrose as a template and carbon precursor, respectively, under a hydrothermal condition. The prepared HCS were characterized by SEM, TEM and N2 adsorption. The prepared HCS showed uniforms size and high mesoporosity. It was found that the presence of acidic site on the silica particle templates would be crucial for the preparation of the HCS. Without the acidic site on silica particles, the macroporous carbon with high microporosity was prepared. It was found that the method employed in this work was highly suitable for the preparation of monodisperse HCS.  相似文献   
153.
We hypothesize that programmable hybridization to noncanonical nucleic acid motifs may be achieved by macromolecular display of binders to individual noncanonical pairs (NCPs). As each recognition element may individually have weak binding to an NCP, we developed a semi-rational approach to detect low affinity interactions between selected nitrogenous bases and noncanonical sites in duplex DNA and RNA. A set of fluorogenic probes was synthesized by coupling abiotic (triazines, pyrimidines) and native RNA bases to thiazole orange (TO) dye. This probe library was screened against duplex nucleic acid substrates bearing single abasic, single NCP, and tandem NCP sites. Probe engagement with NCP sites was reported by 100–1000× fluorescence enhancement over background. Binding is strongly context-dependent, reflective of both molecular recognition and stability: less stable motifs are more likely to bind a synthetic probe. Further, DNA and RNA substrates exhibit entirely different abasic and single NCP binding profiles. While probe binding in the abasic and single NCP screens was monotonous, much richer binding profiles were observed with the screen of tandem NCP sites in RNA, in part due to increased steric accessibility. In addition to known binding interactions between the triazine melamine (M) and T/U sites, the NCP screens identified new targeting elements for pyrimidine-rich motifs in single NCPs and 2×2 internal bulges. We anticipate that semi-rational approaches of this type will lead to programmable noncanonical hybridization strategies at the macromolecular level.  相似文献   
154.
Nonpolar a-plane GaN layers grown on r-plane sapphire substrates were examined by using a two-step growth process. The higher initial growth pressure for the nucleation layer resulted in the improved crystalline quality with lower density of both threading dislocations and basal stacking faults. This was attributed to the higher degree of initial roughening and recovery time via a growth mode transition from three-dimensional (3D) to quasi two-dimensional (2D) lateral growth. Using Hall-effect measurements, the overgrown Si doped GaN layers grown with higher initial growth pressure were found to have higher mobility. The scattering mechanism due to the dislocations was dominant especially at low temperature (<200 K) for the lower initial growth pressure, which was insignificant for the higher initial growth pressure. The temperature-dependent Hall-effect measurements for the Mg doped GaN with a higher initial growth pressure yielded the activation energy and the acceptor concentration to be 128 meV and 1.2 × 1019 cm−3, respectively, corresponding to about 3.6% of activation at room temperature. Two-step growth scheme with a higher initial growth pressure is suggested as a potential method to improve the performance of nonpolar a-plane GaN based devices.  相似文献   
155.
156.
Three‐dimensional, vertically aligned MnO/nitrogen‐doped graphene (3D MnO/N‐Gr) walls were prepared through facile solution‐phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross‐links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as‐prepared 3D MnO/N‐Gr hybirdes provide a large surface area (91.516 m2 g?1) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g?1 at 0.25 A g?1 and an excellent charge/discharge stability (93.7 % capacity retention after 8000 cycles) in aqueous 1 m Na2SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N‐Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg?1 and a power density of 437.5 W kg?1.  相似文献   
157.
Polyethylene glycol (PEG) hydrogel microparticles generated via stop-flow lithography can be utilized for efficient microparticle-based cell culture processes because of their high biocompatibility, the molecular diffusion capability in the gel structure, and the tunability of their shape and size. However, the typical functionalization process of PEG microparticles with cell-adhesion promoters has inevitable limitations, requiring additional linker molecules and the preconjugation of linkers to cell-adhesion promoters and microparticles. In this study, a simple and direct cell-adhesion promoter functionalization process of the PEG microparticles is presented by use of aza-Michael reaction between remnant unreacted acrylate groups in particles and amine groups in cell-adhesion promoters. On the basis of proposed process, particles are directly conjugated with poly-l -lysine (PLL), a typical cell-adhesion promoter that can electrostatically interact with cellular membranes, in a controllable manner. We demonstrate enhanced cell-adhesion capabilities of the particles along with the increased amount of conjugated PLL in the particles. Furthermore, to validate extended applicability, the particles are directly conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides, in which RGD sequence is involved in the cell-adhesion behavior of extracellular matrix proteins, including fibronectin. The introduced GRGDS peptides increase the cell-adhesion capacity of the microparticles binding to integrin proteins in cellular membranes.  相似文献   
158.
Concentrated suspensions of sulfonated polyacrylamide (SPA)/Na+-montmorillonite (Na-MMT) were prepared and their stability and steady shear rheological properties were described as a function of nanoparticle and polymer concentration and temperature. The results showed that the Na-MMT nanoparticles suspensions were stable in the absence and presence of SPA and no sedimentation was seen. The Z-average particle sizes for the SPA/Na-MMT suspensions increased in the presence of SPA. Rheological investigations showed that the SPA solutions and SPA/Na-MMT suspensions displayed non-Newtonian behavior in almost the whole range of shear rate. All the suspensions exhibited a shear-thinning flow character as shear rate increased. The flow curves indicated the shear viscosity and stress of the samples were decreased with increasing nanoparticles concentration up to 1.5 wt%, but for Na-MMT loading greater than 1.5 wt% there was an increase in shear viscosity and stress of the suspensions. Increasing of SPA concentration had more effect on increasing the rheological properties of SPA/Na-MMT suspensions than increasing of nanoclay content. Shear viscosity and stress of the suspensions increased with increasing SPA concentration and decreased with increasing temperature from 50°C to 70°C.  相似文献   
159.
The structures of many disordered materials are not ideally random, but contain structural order on the scale of 1–3 nm. However, such nanoscale order, called medium‐range order, cannot be detected by conventional diffraction methods in most cases. Fluctuation transmission electron microscopy (FTEM) has the capability to detect medium‐range order in disordered materials based on statistical analysis of nanodiffraction patterns or dark‐field images from TEM. FTEM has been successful in demonstrating the theoretically predicted development of nanoscale nuclei in amorphous chalcogenides, as well as in revealing the subtle effect of different preparation routes on the medium‐range order in amorphous semiconductors and metals. The fluctuation principle can also be applied to study structural order on longer length scales in polymers and other disordered materials using X‐rays or visible light. Further advances in theory and practice of FTEM will greatly increase our understanding of amorphous structures and nucleation phenomena.  相似文献   
160.
The cellular behavior of ginsenosides on cancer cells has not been measured directly despite their potent anticancer activities and biological actions. A liquid chromatography–mass spectrometry (LC-MS) method was developed to measure the selective cellular uptake of ginsenosides in both cell lysates and culture media. Fifteen ginsenosides were separated within 17 min with good peak shapes using a 2-μm sub-particle size C18 column. Quantification was performed by triple-quadrupole MS with electrospray ionization in negative ion mode. The sample preparation containing the solid-phase extraction was linear (correlation coefficient, r 2 > 0.992) for all analytes, while the limit of quantification ranged from 0.5 to 2.0 ng/mL in both matrices. The assay precision (%CV) and accuracy (%bias) at three different concentrations (5, 20, and 100 ng/mL) were 1.4% to 11.6% and 94.9% to 106.4%, respectively. When this method was used to examine the selective cellular uptake of ginsenosides, the relative non-polar and protopanaxadiol class ginsenosides, such as Rg3, Rk1, Rg5, Rh2, compound-K, and protopanaxadiol (PPD), showed cellular uptake in the MCF-7 cells, but the relative polar and protopanaxatriol class of ginsenosides did not accumulate in the cells. The most non-polar ginsenoside PPD, which is an aglycone of the protopanaxadiol type, resulted in the highest uptake rate. These results show that the different anticancer activities are due to the selective uptake of ginsenosides based on their chemical structures. This LC-MS-based method can be used to estimate the biological activity of ginsenosides on cells from their structural diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号