首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   5篇
化学   102篇
力学   1篇
数学   1篇
物理学   3篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   16篇
  2010年   7篇
  2009年   9篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
11.
The mechanism of copper‐mediated Sonogashira couplings (so‐called Stephens–Castro and Miura couplings) is not well understood and lacks clear comprehension. In this work, the reactivity of a well‐defined aryl‐CuIII species ( 1 ) with p‐R‐phenylacetylenes (R=NO2, CF3, H) is reported and it is found that facile reductive elimination from a putative aryl‐CuIII‐acetylide species occurs at room temperature to afford the Caryl?Csp coupling species ( IR ), which in turn undergo an intramolecular reorganisation to afford final heterocyclic products containing 2H‐isoindole ( P , P , PHa ) or 1,2‐dihydroisoquinoline ( PHb ) substructures. Density Functional Theory (DFT) studies support the postulated reductive elimination pathway that leads to the formation of C?Csp bonds and provide the clue to understand the divergent intramolecular reorganisation when p‐H‐phenylacetylene is used. Mechanistic insights and the very mild experimental conditions to effect Caryl?Csp coupling in these model systems provide important insights for developing milder copper‐catalysed Caryl?Csp coupling reactions with standard substrates in the future.  相似文献   
12.
13.
14.
This work reports on the development of a graphite-polystyrene composite electrode of planar configuration, containing silver(II) oxide and copper(II) oxide catalysts (AgO-CuO), for the measurement of electrochemical oxygen demand (EOD). Optimisation studies of the composite composition as well as conditions for its processing on planar substrates and generation of an appropriate electrochemical active area resulted in the scalable fabrication of robust composite electrodes. These were evaluated with glucose as target analyte. They showed competitive low limits of detection in a linear concentration range from 5 mg L−1 to 1400 mg L−1 of O2. Besides, they were stable for at least one year. The determination of EOD in wastewater samples coming from production lines of parenteral food and winemaking was successfully carried out.  相似文献   
15.
16.
The formation of hierarchical nanostructures using preformed dumbbell-like species made of covalent organic–inorganic polyoxometalate (POM)-based hybrids is herein described. In this system, the presence of charged subunits (POM, metal linkers, and counter ions) in the complex molecular architecture can drive their aggregation, which results from a competition between the solvation energy of the discrete species and intermolecular electrostatic interactions. We show that the nature of the POM and the charge of the metal linker are key parameters for the hierarchical nanoorganization. The experimental findings were corroborated with a computational investigation combining DFT and molecular dynamics simulation methods, which outlines the importance of solvation of the counter ion and POM/counter ion association in the aggregation process. The dumbbell-like species can also form gels, in the presence of a poorer solvent, displaying similar nanoorganization of the aggregates. We show that starting from the designed molecular building units whose internal charges can be controlled by redox trigger we can achieve their implementation into soft nanostructured materials through the control of their supramolecular organization.

The formation of hierarchical nanostructures using supramolecular dumbbell-like species made of organic–inorganic polyoxometalate-based hybrids is investigated by combination of SAXS and computational methods.  相似文献   
17.
The use of intact cells in medical research offers a number of advantages over employing cell-free systems. In diagnostics, cells isolated from liquid biopsies can be directly used, speeding up the time of analysis and diminishing the risk of protein degradation by sample manipulation. In drug discovery, studies in live cells take into account aspects neglected in cell-free systems, such as uptake, metabolization, and subcellular concentration by compartmentalization of potential drug candidates. Therefore, probes for studies in cellulo are of paramount importance. Acid ceramidase (AC) is a lysosomal enzyme that hydrolyses ceramides into sphingoid bases and fatty acids. The essential role of this enzyme in the outburst and progress of several diseases, some of them still incurable, is well sustained. Despite the great clinical relevance of AC as a biomarker and therapeutic target, the specific monitoring of AC activity in live cells has remained elusive due to the concomitant existence of neutral and alkaline ceramidases. In this work, we report that 1-deoxydihydroceramides are exclusively hydrolysed by AC. Using N-octanoyl-18-azidodeoxysphinganine as a probe and a BODIPY-substituted bicyclononyne, we show the click-reliant predominant staining of lysosomes, with extra-lysosomal labeling also occurring in some cells. Importantly, using pharmacological and genetic tools together with high resolution mass spectrometry, we demonstrate that both lysosomal and extra-lysosomal staining are AC-dependent. These findings are translated into the specific flow cytometry monitoring of AC activity in intact cells, which fills an important gap in the field of diseases linked to altered AC activity.

The use of intact cells in medical research offers a number of advantages over employing cell-free systems.  相似文献   
18.
The self-assembly mechanisms of polyoxometalates (POMs) are still a matter of discussion owing to the difficult task of identifying all the chemical species and reactions involved. We present a new computational methodology that identifies the reaction mechanism for the formation of metal-oxide clusters and provides a speciation model from first-principles and in an automated manner. As a first example, we apply our method to the formation of octamolybdate. In our model, we include variables such as pH, temperature and ionic force because they have a determining effect on driving the reaction to a specific product. Making use of graphs, we set up and solved 2.8 × 105 multi-species chemical equilibrium (MSCE) non-linear equations and found which set of reactions fitted best with the experimental data available. The agreement between computed and experimental speciation diagrams is excellent. Furthermore, we discovered a strong linear dependence between DFT and empirical formation constants, which opens the door for a systematic rescaling.

The self-assembly mechanisms of polyoxometalates (POMs) are still a matter of discussion owing to the difficult task of identifying all the chemical species and reactions involved. The POMSimulator deals with that complexity in an automated manner.  相似文献   
19.
In this work, the dynamics of electronic energy transfer (EET) in bichromophoric donor–acceptor systems, obtained by functionalizing a calix[4]arene scaffold with two dyes, was experimentally and theoretically characterized. The investigated compounds are highly versatile, due to the possibility of linking the dye molecules to the cone or partial cone structure of the calix[4]arene, which directs the two active units to the same or opposite side of the scaffold, respectively. The dynamics and efficiency of the EET process between the donor and acceptor units was investigated and discussed through a combined experimental and theoretical approach, involving ultrafast pump–probe spectroscopy and density functional theory based characterization of the energetic and spectroscopic properties of the system. Our results suggest that the external medium strongly determines the particular conformation adopted by the bichromophores, with a direct effect on the extent of excitonic coupling between the dyes and hence on the dynamics of the EET process itself.  相似文献   
20.
The influence of hydroxy-functionalized hyperbranched poly(ester-amide) (HBP) of different molecular weight on the curing process of diglycidylether of bisphenol A (DGEBA) was studied using methyltetrahydrophthalic anhydride (MTHPA) as curing agent. By Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) the curing reaction was monitored and the covalent incorporation of the modifier in the matrix was proved. By thermomechanical analysis (TMA) the reduction of the contraction after gelation on changing the HBP proportion was observed. The incorporation of HBP increased the glass transition temperature (Tg) and reduced the overall shrinkage. The modified materials showed a higher thermal degradability than neat DGEBA thermosets allowing reworkability. Thermal expansion coefficient, Young’s modulus, impact strength and microhardness were improved. The water uptake behavior was also evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号