首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6219篇
  免费   693篇
  国内免费   752篇
化学   4599篇
晶体学   79篇
力学   295篇
综合类   77篇
数学   1053篇
物理学   1561篇
  2024年   14篇
  2023年   116篇
  2022年   206篇
  2021年   218篇
  2020年   265篇
  2019年   268篇
  2018年   235篇
  2017年   233篇
  2016年   301篇
  2015年   323篇
  2014年   376篇
  2013年   568篇
  2012年   549篇
  2011年   526篇
  2010年   417篇
  2009年   401篇
  2008年   449篇
  2007年   372篇
  2006年   341篇
  2005年   251篇
  2004年   197篇
  2003年   137篇
  2002年   149篇
  2001年   84篇
  2000年   80篇
  1999年   69篇
  1998年   52篇
  1997年   45篇
  1996年   36篇
  1995年   18篇
  1994年   27篇
  1993年   27篇
  1992年   14篇
  1991年   15篇
  1990年   17篇
  1989年   19篇
  1988年   21篇
  1987年   15篇
  1986年   10篇
  1985年   24篇
  1984年   20篇
  1983年   15篇
  1982年   12篇
  1981年   10篇
  1980年   16篇
  1979年   12篇
  1978年   18篇
  1977年   14篇
  1976年   12篇
  1975年   10篇
排序方式: 共有7664条查询结果,搜索用时 15 毫秒
51.
Angelica pubescens and Angelica sinensis belong to the Umbelliferae family and both are used as traditional Chinese medicines. In the present study, headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry (GC-MS) was used for the analysis of the volatile constituents present in their roots. Eighty-seven compounds in Angelica pubescens and thirty-six compounds in Angelica sinensis were identified by GC-MS. Their relative contents were calculated by the peak area ratio. HS-SPME was compared to steam distillation (SD) by analyzing the volatile constituents of Angelica sinensis root. A good agreement between results obtained with both techniques was found. As a conclusion, HS-SPME is a powerful tool for determining the volatile constituents present in the TCMs.  相似文献   
52.
Two layered amine-templated cobalt squarates, [C6N2H14]2[Co2(C4O4)3(H2O)4], I, and [C3N2H5]2[Co2(C4O4)3(H2O)4], II, have been prepared under hydrothermal conditions. Both I and II contain chains formed by dimers comprising two cobalt atoms bound to the squarate units, the chains being connected through hydrogen bond interactions. An amine-templated cobalt squarate of the formula [C4N2H12][Co(C4O4)2(H2O)4][H2O]2, III, as well as its Ni, Zn and Cd analogues have been prepared by room temperature reactions. III has a layered architecture wherein the cobalt-squarate monomers are linked by the amine molecules. Co and Zn analogues of [Ni(C4O4)(H2O)2(C3N2H4)] with ligating imidazole units have also been prepared and characterized.  相似文献   
53.
Xiao  Xiong   Zhong  Yucheng  Cheng  Mingyang  Sheng  Lei  Wang  Dan  Li  Shuxin 《Cellulose (London, England)》2021,28(17):11209-11229

There are growing research interests in flax fibers due to their renewable ‘green’ origin and high strength. However, these natural fibers easily absorb moisture and have poor adhesion with polymer matrix leading to low interfacial strength for the composites. A hybrid chemical treatment technique combining alkali (sodium hydroxide) and silane treatments is adopted in the current study to modify flax fibers for improved performances of flax/polypropylene composites. Changes in chemical composition, microstructure, wettability, surface morphology, crystallinity and tensile properties of single flax fiber before and after chemical treatments were comprehensively characterized using techniques including SEM, FTIR, AFM, XRD, micro-fiber tester, etc. It was found that hemicellulose and lignin at the fiber surface were removed due to alkali treatment, which helped to reduce moisture absorption of the composites. Alkali-treated flax fibers were later subjected to silane treatment, which helped to improve the compatibility between flax fiber and polypropylene matrix. After alkali-silane hybrid chemical treatment, moisture absorption of the composites was further decreased. At the same time, the interfacial bonding strength between flax and polypropylene is significantly enhanced. All these results validate the great advantage of the hybrid chemical treatment approach for flax/polypropylene composites, which has the potential to promote the application of chemical treatment techniques in the plant fiber composite industry.

Graphic abstract
  相似文献   
54.
姚丹姝 《合成化学》1998,6(3):315-318
含活性基团的醛可与烯丙碘和锡粉直接进行亲核加成反应,得到高烯丙基的醇,水的存在不利于此反应的进行,与烯丙基溴相比,烯丙基碘反应活性更强,可在短时间内得较高的产率。  相似文献   
55.
Photochemical cyclization of compound 1, a homoenediyne (-CCC=CCH2CC-) bearing two ethynylanthracene chromophores, yields two isomeric dihydrocyclopent[a]indene ring systems, spiro-fused to the 9-position of a 9,10-dihydroanthracene moiety. Evidence of a photochemically initiated diradical cyclization pathway is proposed on the basis of (i) hydrogen abstraction from reaction with 1,4-cyclohexadiene (1,4-CHD) and (ii) the observation of 1,4-addition of benzene (solvent). The reaction was further analyzed by a complete density functional theory (DFT) study, using an unrestricted approach (UBLYP) with a 6-31G* basis set for the open-shell triplet states of the reactants, products, and diradical intermediates to model the photochemical nature of observed transformation. A mechanism detailing the observed cyclization/addition reaction is proposed.  相似文献   
56.
[reaction: see text] Two easy-to-synthesize polypyrrolic 2,5-diamidothiophene Schiff base macrocycles are reported, along with their anion binding properties as determined via UV-vis spectroscopic titrations carried out in dichloroethane. There is a striking difference between the interactions with anions of the two macrocycles, a finding ascribed to differences in their rigidity. For example, the more flexible dipyrromethane-derived macrocycle displays a 1.2:1 hydrogen sulfate versus nitrate selectivity, while its more rigid bipyrrole-derived congener shows a 7.4:1 selectivity in favor to hydrogen sulfate.  相似文献   
57.
The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). The mean volumetric thermal expansion coefficient is 168.8 × 10−6 K−1 and the mean uniaxial thermal expansion coefficient is 71.4 × 10−6 K−1, based on 745 and 1129 different observations, respectively. Normal and anomalous coefficients can be identified using these values and the associated standard deviations. The anisotropy of the thermal expansion is also evaluated and found to have a very broad distribution. 4719 different structures, comprising 4093 different molecular compounds and 626 additional polymorphs have been analyzed on their thermal expansion properties. Approximately 34% of these structures may have at least one orthogonal axis with negative thermal expansion, much more than generally believed. Moreover 127 structures have been identified which could have negative volumetric thermal expansion. Experimental validation using a robust protocol with data collected at more than 2 different temperatures is required to validate these cases.

The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). Negative uniaxial thermal expansion is much more common than generally believed.  相似文献   
58.
The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr3O(OH)(H2O)2(terephthalate)3 (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr3, MAPbBr3 (MA+ = methylammonium), and (FA)PbBr3 (FA+ = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr3 (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls.

We demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites.  相似文献   
59.
Chemodynamic therapy(CDT) is an emerging endogenous stimulation activated tumor treatment approach that exploiting iron-containing nanomedicine as catalyst to convert hydrogen peroxide(H_2O_2)into toxic hydroxyl radical(·OH) through Fenton reaction.Due to the unique characteristics(weak acidity and the high H_2O_2 level) of the tumor microenvironment,CDT has advantages of high selectivity and low side effect.However,as an important substrate of Fenton reaction,the endogenous H_2O_2 in tumor is still insufficient,which may be an important factor limiting the efficacy of CDT.In order to optimize CDT,various H_2O_2-generating nanomedicines that can promote the production of H_2O_2 in tumor have been designed and developed for enhanced CDT.In this review,we summarize recently developed nanomedicines based on catalytic enzymes,nanozymes,drugs,metal peroxides and bacteria.Finally,the challenges and possible development directions for further enhancing CDT are prospected.  相似文献   
60.
The formation and unimolecular reactions of primary ozonides and carbonyl oxides arising from the O(3)-initiated reactions of isoprene have been investigated using density functional theory and ab initio molecular orbital calculations. The activation energies of O(3) cycloaddition to the two double bonds of isoprene are found to be comparable (3.3-3.4 kcal mol(-1)), implying that the initial two O(3) addition pathways are nearly equally accessible. The reaction energies of O(3) addition to isoprene are between -47 and -48 kcal mol(-1). Cleavage of primary ozonides to form carbonyl oxides occurs with a barrier of 11-16 kcal mol(-1) above the ground state of the primary ozonide, and the decomposition energies range from -5 to -13 kcal mol(-1). OH formation is shown to occur primarily via decomposition of the carbonyl oxides with the syn-positioned methyl (alkyl) group, which is more favorable than isomerization to form dioxirane (by 1.1-3.3 kcal mol(-1)). Using the transition-state theory and master equation formalism, we determine an OH yield of 0.25 from prompt and thermal decomposition of the carbonyl oxides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号