首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   53篇
化学   604篇
力学   1篇
数学   56篇
物理学   37篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   17篇
  2019年   18篇
  2018年   4篇
  2017年   2篇
  2016年   31篇
  2015年   19篇
  2014年   27篇
  2013年   32篇
  2012年   39篇
  2011年   71篇
  2010年   26篇
  2009年   29篇
  2008年   43篇
  2007年   48篇
  2006年   51篇
  2005年   46篇
  2004年   29篇
  2003年   18篇
  2002年   27篇
  2001年   7篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   7篇
  1996年   14篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   6篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1960年   1篇
  1891年   1篇
排序方式: 共有698条查询结果,搜索用时 31 毫秒
691.
Several definitions of an atom in a molecule (AIM) in three‐dimensional (3D) space, including both fuzzy and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures, namely, Iring and multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived from the classical Hirshfeld method and from Bader's quantum theory of atoms in molecules. For bonded atoms, all methods yield ESI values in very good agreement, especially for C–C interactions. In the case of nonbonded interactions, there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D space. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.  相似文献   
692.
693.
The substituent effect in 4-substituted-1,2-benzoquinone is investigated by means of modeling using B3LYP hybrid functional in conjunction with the 6-311+G(d,p) basis set. The interrelation between different types of substituents, X = NO, NO(2), CN, CHO, H, Me, OMe, OH, NH(2), NHMe and N(Me)(2), and both CO groups has been characterized both qualitatively and then quantitatively by means of several measures of π-electron delocalization (HOMA, MCI, DI, FLU) based on structural and electronic properties of 4-substituted-1,2-benzoquinones chosen for analysis. Results of this analysis clearly show that only the meta-placed CO group is affected by substituents, whereas the para-placed CO group is rather insensitive to substitution. These observations may help to explain diversified chemical properties (including reactivity) of CO centers in o-benzoquinone derivatives. Among others, they may explain differences in proton-accepting properties of carbonyl O atoms, as it is shown for simple models in which carbonyl groups in o-benzoquinone act as proton acceptors in H-bonds of O···H-F type.  相似文献   
694.
Lighten the load! A family of enantiopure 4-oxy-substituted 3-aminopyrrolidines arising from the enantioselective ring-opening of meso-3-pyrroline oxide have been developed as catalysts for the asymmetric, anti-selective Mannich reaction (see scheme; PMP=p-methoxyphenyl; PG=protecting group). Very high catalytic activity (down to 0.01 mol?% loading) and stereoselectivity have been recorded.  相似文献   
695.
Density functional calculations were carried out to ascertain the origin of enantioselectivity in the brucine N‐oxide (BNO)‐assisted enantioselective Pauson–Khand reaction (PKR) of norbornene with 2‐methyl‐3‐butyn‐2‐ol. The computed ee value in acetone is 68 % (R), which compares well to the previously reported experimental value of 58 % (R). In DME the computed ee value of 76 % (R) is in excellent agreement with the experimentally determined value of 78 % (R). The mechanism of enantioselectivity consists of several steps. First, the dicobalt complex is activated by BNO with chirality transfer from enantiopure BNO to the dicobalt complex. Second, competition occurs between a racemization process and complexation with the olefin reagent, which leads to the products. The lower ee value in acetone is due to the lower energy barrier of the racemization process. Calculations show that replacement of BNO by a hypothetical more enantioselective chiral N‐oxide will hardly increase the ee value beyond 90 %.  相似文献   
696.
697.
698.
The classic pnictogen dichotomy stands for the great contrast between triply bonding very stable N2 molecules and its heavier congeners, which appear as dimers or oligomers. A banner example involves phosphorus as it occurs in nature as P4 instead of P2, given its weak π-bonds or strong σ-bonds. The P2 synthetic value has brought Lewis bases and metal coordination stabilization strategies. Herein, we discuss the unrealized encapsulation alternative using the well-known fullerenes' capability to form endohedral and stabilize otherwise unstable molecules. We chose the most stable fullerene structures from Cn (n = 50, 60, 70, 80) and experimentally relevant from Cn (n = 90 and 100) to computationally study the thermodynamics and the geometrical consequences of encapsulating P2 inside the fullerene cages. Given the size differences between P2 and P4, we show that the fullerenes C70–C100 are suitable cages to side exclude P4 and host only one molecule of P2 with an intact triple bond. The thermodynamic analysis indicates that the process is favorable, overcoming the dimerization energy. Additionally, we have evaluated the host-guest interaction to explain the origins of their stability using energy decomposition analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号