首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  国内免费   1篇
化学   17篇
物理学   7篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  1999年   1篇
  1997年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
The effect of cationic micelles of Cetyltrimethyl ammonium bromide (CTAB) on the kinetics of oxidation of dextrose by N-Bromophthalimide were studied at 40°C. The reaction follows fractional-order and first order kinetics, with respect to [dextrose] and [NBP], respectively. CTAB strongly catalyze the reaction, and typical kobs and [CTAB] profile was observed, that is, with a progressive increase in [CTAB], the reaction rate increased, reaches a maximum value then decreased. Results are treated quantitatively in terms of Berezin's Model, which is applicable to bimolecular micellar catalyzed reaction. There is a negative effect of mercuric acetate and phthalimide. The influence of salts on the reaction rates has also been seen. The activation parameters as well as other parameters were calculated and suitable mechanism consistent with the experimental findings has been proposed.  相似文献   
22.
Abstract

A series of novel acyclic and cyclic diaryl sulphides was synthesized from 2,2′-dithiobenzoic acid. The various diaryl sulphides were characterized by use of spectral (IR, 1H and 13C NMR, ESI/MS) and elemental analyses. The antimicrobial activities of the compounds were evaluated in terms of their minimum inhibition concentration (MIC) against a panel of clinical isolates bacteria and were found to possess only moderate antimicrobial activities. N,N′-Bis(2-hydroxyphenyl)-2,2′-thiodibenzamide (13), exhibiting a hydroxy group at the phenyl ring, was the most active antimicrobial agent within the series, with MIC values of 0.05 mg mL–1 and 10 mg mL–1 against Staphylococcus aureus and Bacillus cereus, respectively. The antioxidant efficiency of the diaryl sulphides was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity with 13 being the most active compound. The interaction of 2,2′-thiodibenzanilide, N,N′-bis(2-methylphenyl)-2,2′-thiodibenzamide, and N,N′-bis(2-hydroxyphenyl)-2,2′-thiobenzamide with guanine, glutamic acid, and urea were studied quantitatively with binding constants ranging from 1 × 103 M?1 to 2.7 × 104 M?1.  相似文献   
23.
The structures of N,N′‐bis(2‐methylphenyl)‐2,2′‐thiodibenzamide, C28H24N2O2S, (Ia), N,N′‐bis(2‐ethylphenyl)‐2,2′‐thiodibenzamide, C30H28N2O2S, (Ib), and N,N′‐bis(2‐bromophenyl)‐2,2′‐thiodibenzamide, C26H18Br2N2O2S, (Ic), are compared with each other. For the 19 atoms of the consistent thiodibenzamide core, the r.m.s. deviations of the molecules in pairs are 0.29, 0.90 and 0.80 Å for (Ia)/(Ib), (Ia)/(Ic) and (Ib)/(Ic), respectively. The conformations of the central parts of molecules (Ia) and (Ib) are similar due to an intramolecular N—H...O hydrogen‐bonding interaction. The molecules of (Ia) are further linked into infinite chains along the c axis by intermolecular N—H...O interactions, whereas the molecules of (Ib) are linked into chains along b by an intermolecular N—H...π contact. The conformation of (Ic) is quite different from those of (Ia) and (Ib), since there is no intramolecular N—H...O hydrogen bond, but instead there is a possible intramolecular N—H...Br hydrogen bond. The molecules are linked into chains along c by intermolecular N—H...O hydrogen bonds.  相似文献   
24.
The kinetics of micellar-catalyzed oxidation of mannose by N-bromophthalimide was studied in the presence of sulfuric acid at 313 K. The orders of reaction with respect to [mannose], [oxidant], and [H+] were found to be fractional, first, and negative fractional order, respectively. Anionic micelles of sodiumdodecyl sulfate showed a partial inhibitory effect, while cationic micelles of cetyltrimethylammonium bromide increased the reaction rate with the same kinetic behavior. The reaction was catalyzed by cationic micelles, because of favorable electrostatic/thermodynamic/hydrophobic/hydrogen bonding between reactants and cationic micelles. Their catalytic roles are best explained by Berezin’s model. A variation of [phthalimide] showed that the rate of reaction decreased with increasing [phthalimide]. It was observed that, an increase of [mercuric acetate] had no effect on reaction velocity. The influence of salts on the reaction rate was also studied. The rate constant (kW ), binding constants (KS+KO), and corresponding activation parameters (Ea, ⊿H#, ⊿S#, and ⊿G#) were determined. A detailed mechanism with associated reaction kinetics is presented and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号