首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7603篇
  免费   669篇
  国内免费   693篇
化学   5188篇
晶体学   135篇
力学   412篇
综合类   53篇
数学   755篇
物理学   2422篇
  2025年   18篇
  2024年   110篇
  2023年   184篇
  2022年   259篇
  2021年   311篇
  2020年   395篇
  2019年   383篇
  2018年   263篇
  2017年   243篇
  2016年   377篇
  2015年   386篇
  2014年   419篇
  2013年   539篇
  2012年   562篇
  2011年   585篇
  2010年   420篇
  2009年   387篇
  2008年   400篇
  2007年   340篇
  2006年   337篇
  2005年   263篇
  2004年   259篇
  2003年   187篇
  2002年   235篇
  2001年   174篇
  2000年   122篇
  1999年   118篇
  1998年   74篇
  1997年   71篇
  1996年   50篇
  1995年   37篇
  1994年   53篇
  1993年   34篇
  1992年   28篇
  1991年   41篇
  1990年   38篇
  1989年   29篇
  1988年   37篇
  1987年   15篇
  1986年   18篇
  1985年   20篇
  1984年   11篇
  1983年   14篇
  1982年   11篇
  1981年   7篇
  1978年   8篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
排序方式: 共有8965条查询结果,搜索用时 0 毫秒
131.
    
The magnetic properties of noble-metal nanoparticles are a puzzling phenomenon, tentatively often explained as a size effect or a ligand effect. Many experimental studies performed to date have attempted to vary these readily available parameters without reaching a definitive conclusion. In an attempt at better understanding the role of core crystallinity on these magnetic properties, we have compared the behavior of silver nanoparticles, which were either single-crystalline or multi-twinned, of almost identical sizes and with the same ligand coating. Our results indicate that single-crystalline nanoparticles tend to behave as classical paramagnetic materials, whereas multi-twinned ones exhibit a combination of para- and ferro-magnetic behaviors. Our hypothesis is that lattice defects within the core bear magnetic moments which couple through conduction electrons, with dipolar interactions also playing a local and macroscopic role.  相似文献   
132.
    
As an emerging class of promising porous materials, the development of two-dimensional conductive metal organic frameworks (2D c-MOFs) is hampered by the few categories and tedious synthesis of the specific ligands. Herein, we developed a nonplanar hexahydroxyl-functionalized Salphen ligand (6OH-Salphen) through a facile two-step synthesis, which was further applied to construct layered 2D c-MOFs through in situ one pot synthesis based on the synergistic metal binding effect of the N2O2 pocket of Salphen. Interestingly, the C2v-symmetry of ligand endows Cu-Salphen-MOF with periodically heterogeneous pore structures. Benefitting from the higher metal density and shorter in-plane metal-metal distance, Cu-Salphen-MOF showcased excellent NO2 sensing performance with good sensitivity, selectivity and reversibility. The current work opens up a new avenue to construct 2D c-MOF directly from nonplanar ligands, which greatly simplifies the synthesis and provides new possibilities for preparing different topological 2D c-MOF based functional materials.  相似文献   
133.
    
Fiber lithium-ion batteries represent a promising power strategy for the rising wearable electronics. However, most fiber current collectors are solid with vastly increased weights of inactive materials and sluggish charge transport, thus resulting in low energy densities which have hindered the development of fiber lithium-ion batteries in the past decade. Here, a braided fiber current collector with multiple channels was prepared by multi-axial winding method to not only increase the mass fraction of active materials, but also to promote ion transport along fiber electrodes. In comparison to typical solid copper wires, the braided fiber current collector hosted 139 % graphite with only 1/3 mass. The fiber graphite anode with braided current collector delivered high specific capacity of 170 mAh g−1 based on the overall electrode weight, which was 2 times higher than that of its counterpart solid copper wire. The resulting fiber battery showed high energy density of 62 Wh kg−1.  相似文献   
134.
    
Targeted synthesis of kagome ( kgm ) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric “two-in-one” monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60@m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.  相似文献   
135.
    
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.  相似文献   
136.
    
In situ photo-deposition of both Pt and CoOx cocatalysts on the facets of poly (triazine imide) (PTI) crystals has been developed for photocatalytic overall water splitting. However, the undesired backward reaction (i.e., water formation) on the noble Pt surface is a spontaneously down-hill process, which restricts their efficiency to run the overall water splitting reaction. Herein, we demonstrate that the efficiency for photocatalytic overall water splitting could be largely promoted by the decoration of Rh/Cr2O3 and CoOx as H2 and O2 evolution cocatalysts, respectively. Results reveal that the dual cocatalysts greatly extract charges from bulk to surface, while the Rh/Cr2O3 cocatalyst dramatically restrains the backward reaction, achieving an apparent quantum efficiency (AQE) of 20.2 % for the photocatalytic overall water splitting reaction.  相似文献   
137.
A new enantioselective open-tubular capillary electrochromatography was developed employing poly(glycidyl methacrylate) nanoparticles/β-cyclodextrin covalent organic frameworks chemically immobilized on the inner wall of the capillary as a stationary phase. A pretreated silica-fused capillary reacted with 3-aminopropyl-trimethoxysilane followed by poly(glycidyl methacrylate) nanoparticles and β-cyclodextrin covalent organic frameworks through a ring-opening reaction. The resulting coating layer on the capillary was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The electroosmotic flow was studied to evaluate the variation of the immobilized columns. The chiral separation performance of the fabricated capillary columns was validated by the analysis of the four racemic proton pump inhibitors including lansoprazole, pantoprazole, tenatoprazole, and omeprazole. The influences of bonding concentration, bonding time, bonding temperature, buffer type and concentration, buffer pH, and applied voltage on the enantioseparation of four proton pump inhibitors were investigated. Good enantioseparation efficiencies were achieved for all enantiomers. In the optimum conditions, the enantiomers of four proton pump inhibitors were fully resolved within 10 min with high resolutions of 9.5–13.9. The column-to-column and inter- to intra-day repeatability of the fabricated capillary columns through relative standard deviation were found better than 9.54%, exhibiting satisfactory stability and repeatability of the fabricated capillary columns.  相似文献   
138.
Summary The performances of two alternative sample introduction methods for use with Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) have been evaluated for the analysis of the same sample material. The laser ablation sample introduction system is based on a Nd:YAG laser to which an x-y-z translational sampling head had been added. A study has been made of a number of parameters which affect the performance of the system to find the optimum operating conditions. The slurry introduction system involved aspirating the slurries into the plasma using a de Galan nebuliser and a Scott-type spray chamber arrangement. A study has been made of the parameters which control the production of stable homogeneous slurries. Initial particle size measurements have been carried out on the slurried samples to show how this affects this method of sample introduction. Results are presented for the analysis of a South African reference material rock sample (SARM 5) by ICP-OES with both laser ablation and slurry nebulisation sample introduction and some preliminary results for the analysis by ICP-MS with laser ablation introduction. Semi-quantitative results are obtained for laser ablation ICP-OES as only one matrix matched standard is used. However, the agreement between the results obtained for slurry nebulisation and the certificate value is poor. It is suggested by comparison with previous studies that this may be due to particle size effects. Encouraging results were obtained for the determination of trace elements by laser ablation ICP-MS.  相似文献   
139.
    
As the power supply of the prosperous new energy products, advanced lithium ion batteries (LIBs) are widely applied to portable energy equipment and large‐scale energy storage systems. To broaden the applicable range, considerable endeavours have been devoted towards improving the energy and power density of LIBs. However, the side reaction caused by the close contact between the electrode (particularly the cathode) and the electrolyte leads to capacity decay and structural degradation, which is a tricky problem to be solved. In order to overcome this obstacle, the researchers focused their attention on electrolyte additives. By adding additives to the electrolyte, the construction of a stable cathode‐electrolyte interphase (CEI) between the cathode and the electrolyte has been proven to competently elevate the overall electrochemical performance of LIBs. However, how to choose electrolyte additives that match different cathode systems ideally to achieve stable CEI layer construction and high‐performance LIBs is still in the stage of repeated experiments and exploration. This article specifically introduces the working mechanism of diverse electrolyte additives for forming a stable CEI layer and summarizes the latest research progress in the application of electrolyte additives for LIBs with diverse cathode materials. Finally, we tentatively set forth recommendations on the screening and customization of ideal additives required for the construction of robust CEI layer in LIBs. We believe this minireview will have a certain reference value for the design and construction of stable CEI layer to realize desirable performance of LIBs.  相似文献   
140.
    
l ‐Arginine has many special physiological and biochemical functions, with wide applications in the food and pharmaceutical industry. Few studies on the purification of l ‐arginine from fermentation broth have been conducted; however, none of them were systematic enough for industrial scale‐up. Therefore, it is necessary to develop a highly efficient and systematic process for the purification of l ‐arginine from fermentation broth. In this study, we screened out a cation exchange resin, D155, having high exchange capacity, high selectivity, and easy elution capacity, and analyzed its adsorption isotherm, thermodynamics, and kinetics using different models. Further, the process parameters of fixed‐bed ion exchange adsorption and elution were optimized, and the penetration curve during the operation was modeled. Based on the fixed‐bed ion‐exchange parameters, a 30‐column continuous ion‐exchange system was designed, and the flow velocity in each zone was optimized. Finally, to obtain a high purity of l ‐arginine, the purification tests were conducted using anion exchange resin 711, and an l ‐arginine yield of 99.1% and purity of 98.5% was obtained. This effective and economical method also provides a promising strategy for separation of other amino acids from the fermentation broth, which is of great significance to the l ‐arginine fermentation industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号