首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91903篇
  免费   21608篇
  国内免费   4127篇
化学   97136篇
晶体学   701篇
力学   3344篇
综合类   205篇
数学   6795篇
物理学   9457篇
  2024年   414篇
  2023年   4284篇
  2022年   2142篇
  2021年   3277篇
  2020年   6390篇
  2019年   5460篇
  2018年   3132篇
  2017年   1818篇
  2016年   8027篇
  2015年   8197篇
  2014年   7887篇
  2013年   8845篇
  2012年   6668篇
  2011年   4471篇
  2010年   6360篇
  2009年   6226篇
  2008年   4333篇
  2007年   3291篇
  2006年   2512篇
  2005年   2511篇
  2004年   2151篇
  2003年   1887篇
  2002年   2605篇
  2001年   1819篇
  2000年   1617篇
  1999年   736篇
  1998年   322篇
  1997年   289篇
  1996年   290篇
  1995年   325篇
  1994年   237篇
  1993年   330篇
  1992年   201篇
  1991年   189篇
  1989年   158篇
  1988年   158篇
  1981年   170篇
  1980年   202篇
  1979年   191篇
  1978年   196篇
  1977年   315篇
  1976年   368篇
  1975年   460篇
  1974年   473篇
  1973年   287篇
  1972年   369篇
  1971年   356篇
  1970年   542篇
  1969年   414篇
  1968年   456篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
71.
In this article we survey the Trefftz method (TM), the collocation method (CM), and the collocation Trefftz method (CTM). We also review the coupling techniques for the interzonal conditions, which include the indirect Trefftz method, the original Trefftz method, the penalty plus hybrid Trefftz method, and the direct Trefftz method. Other boundary methods are also briefly described. Key issues in these algorithms, including the error analysis, are addressed. New numerical results are reported. Comparisons among TMs and other numerical methods are made. It is concluded that the CTM is the simplest algorithm and provides the most accurate solution with the best numerical stability. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
72.
This article presents and analyzes a simple method for the exterior Laplace equation through the coupling of finite and boundary element methods. The main novelty is the use of a smooth parametric artificial boundary where boundary elements fit without effort together with a straight approximate triangulation in the bounded area, with the coupling done only in nodes. A numerically integrated version of the algorithm is also analyzed. Finally, an isoparametric variant with higher order is proposed. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 555–570, 2003  相似文献   
73.
Two new diamines, 2,4‐diaminotriphenylamine ( 3 ) and N‐(2,4‐diaminophenyl)carbazole ( 4 ), were synthesized via the cesium fluoride‐mediated aromatic substitution reactions of 1‐fluoro‐2,4‐dinitrobenzene with diphenylamine and carbazole, followed by palladium‐catalyzed hydrazine reduction. Amorphous and soluble aramids having pendent diphenylamino and carbazolyl groups were prepared by the phosphorylation polycondensation of aromatic dicarboxylic acids with diamines 3 and 4 , respectively. The aramids derived from diamine 3 had sufficiently high molecular weights to permit the casting of flexible and tough films. They exhibited excellent mechanical properties and moderately high softening temperatures in the 221–298 °C range. However, the reactions of diamine 4 with aromatic diacids gave relatively lower molecular weights products that could not afford flexible films. For a comparative purpose, the parent aramids derived from m‐phenylenediamine and aromatic diacids were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3302–3313, 2004  相似文献   
74.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004  相似文献   
75.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007  相似文献   
76.
This work reports a new synthetic approach for single‐phase TiO2 nanomaterials by solvothermal treatment of titanium tetrachloride in acetone at 80–110 °C. Small, uniform, and yet size‐tunable (5–10 nm) anatase titania nanocrystallites were obtained using a low concentration of TiCl4 in acetone (i.e., at molar ratios of TiCl4/acetone ≤ 1:15) in the temperature range of 80–110 °C, while rutile nanofibers were synthesized using a high concentration of TiCl4 (e.g., TiCl4/acetone = 1:10) at 110 °C. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
77.
78.
Bipyridinophane–fluorene conjugated copolymers have been synthesized via Suzuki and Heck coupling reactions from 5,8‐dibromo‐2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane and suitable fluorene precursors. Poly[2,7‐(9,9‐dihexylfluorene)‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P7 ) exhibits large absorption and emission redshifts of 20 and 34 nm, respectively, with respect to its planar reference polymer Poly[2,7‐(9,9‐dihexylfluorene)‐co‐alt‐1,4‐(2,5‐dimethylbenzene)] ( P11 ), which bears the same polymer backbone as P7 . These spectral shifts originate from intramolecular aromatic C? H/π interactions, which are evidenced by ultraviolet–visible and 1H NMR spectra as well as X‐ray single‐crystal structural analysis. However, the effect of the intramolecular aromatic C? H/π interactions on the spectral shift in poly[9,9‐dihexylfluorene‐2,7‐yleneethynylene‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P10 ) is much weaker. Most interestingly, the quenching behaviors of these two conjugated polymers are largely dependent on the polymer backbone. For example, the fluorescence of P7 is efficiently quenched by Cu2+, Co2+, Ni2+, Zn2+, Mn2+, and Ag+ ions. In contrast, only Cu2+, Co2+, and Ni2+ ions can partially quench the fluorescence of P10 , but much less efficiently than the fluorescence of P7 . The static Stern–Volmer quenching constants of Cu2+, Co2+, and Ni2+ ions toward P7 are of the order of 106 M?1, being 1300, 2500, and 37,300 times larger than those of P10 , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4154–4164, 2006  相似文献   
79.
Arsenic(III) can be quantitatively extracted using sodium diethyldithiocarbamate (NaDDTC) as the complexing agent and C18 reversed phase packing as the column material for solid phase extraction. Arsenic(V) must be reduced to its trivalent oxidation state prior to extraction. A mixture of sodium sulphite, hydrochloric acid, sodium thiosulphate and potassium iodide was found to be optimum for on-line reduction. When the sorbent extraction is carried out without and with the addition of the reduction mixture, arsenic(III) and total arsenic can be determined sequentially by graphite furnace atomic absorption spectrometry with detection limits (3 σ) of 0.32 ng for As(III) and 0.43 ng for total arsenic. A 7.6-fold enhancement in peak area compared to direct injection of 40 μl samples was obtained after 60 s preconcentration. Results obtained for sea water standard reference materials, using aqueous standards for calibration, agree well with certified values. A precision of 5.5% RSD was obtained for total arsenic in a sea water sample (1.65 As). Results obtained for synthetic mixtures of trivalent and pentavalent arsenic agreed well with expected values.  相似文献   
80.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号