首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127231篇
  免费   23064篇
  国内免费   12263篇
化学   101575篇
晶体学   1416篇
力学   6720篇
综合类   963篇
数学   13721篇
物理学   38163篇
  2024年   294篇
  2023年   1806篇
  2022年   3262篇
  2021年   3487篇
  2020年   4494篇
  2019年   5583篇
  2018年   3929篇
  2017年   3473篇
  2016年   7047篇
  2015年   7402篇
  2014年   8188篇
  2013年   10416篇
  2012年   10863篇
  2011年   10462篇
  2010年   8430篇
  2009年   8364篇
  2008年   8366篇
  2007年   7049篇
  2006年   6553篇
  2005年   5920篇
  2004年   4855篇
  2003年   3939篇
  2002年   4502篇
  2001年   3525篇
  2000年   3219篇
  1999年   2417篇
  1998年   1797篇
  1997年   1578篇
  1996年   1576篇
  1995年   1356篇
  1994年   1268篇
  1993年   1064篇
  1992年   915篇
  1991年   845篇
  1990年   677篇
  1989年   581篇
  1988年   452篇
  1987年   432篇
  1986年   352篇
  1985年   352篇
  1984年   241篇
  1983年   210篇
  1982年   172篇
  1981年   136篇
  1980年   103篇
  1979年   59篇
  1978年   62篇
  1976年   61篇
  1975年   67篇
  1973年   60篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
171.
To prevent cyanobacterial bloom in eutrophic water by ultrasonic method, ultrasonic irradiations with different parameters were tested to inhibit Spirulina platensis from growth. The experimental result based on cyanobacterial growth, chlorophyll a and photosynthetic activity showed that, the ultrasonic irradiation inhibited cyanobacterial proliferation effectively, furthermore the inhibition effectiveness increased in the order: 200 kHz>1.7 MHz>20 kHz and became saturated with the increased power. The inhibition mechanism can be mainly attributed to the mechanical damage to the cell structures caused by ultrasonic cavitation, which was confirmed by light microscopy and differential interference microscopy. The optimal frequency of 200 kHz in cavition and sonochemistry was also most effective in cyanobacterial growth inhibition. The higher frequency of 1.7 MHz is weaker than 20 kHz in cavitation, but has more effective inhibition because it is nearer to the resonance frequency of gas vesicle. The inhibition saturation with ultrasonic power was due to the ultrasonic attenuation induced by the acoustic shielding of bubbles enclosing the radiate surface of transducer.  相似文献   
172.
Fixed‐site–carrier membranes were prepared for the facilitated transport of CO2 by casting polyvinylamine (PVAm) on various supports, such as poly(ether sulfone) (PES), polyacrylonitrile (PAN), cellulose acetate (CA), and polysulfone (PSO). The cast PVAm on the support was crosslinked by various methods with glutaraldehyde, hydrochloric acid, sulfuric acid, and ammonium fluoride. Among the membranes tested, the PVAm cast on polysulfone and crosslinked by ammonium fluoride showed the highest selectivity of CO2 over CH4 (>1000). The permeance of CO2 was then measured to be 0.014 m3 (STP)/(m2 bar h) for a 20 μm thick membrane. The effect of the molecular weight of PVAm and feed pressure on the permeance was also investigated. The selectivity increased remarkably with increasing molecular weight and decreased slightly with increased pressure in the range of 1 to 4 bar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4326–4336, 2004  相似文献   
173.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   
174.
According to a multiphase mixture theory, we have mathematically developed a multiphysical model with chemoelectromechanical coupling considerations, termed the multieffect‐coupling electric‐stimulus (MECe) model, to simulate the responsive behavior of electric‐sensitive hydrogels immersed in a bath solution under an externally applied electric field. For solutions of the MECe model consisting of coupled nonlinear partial differential governing equations, a meshless Hermite–Cloud method with a hierarchical iteration technique has been used for a one‐dimensional steady‐state analysis of a hydrogel strip. The computed results are compared with the experimental data, and there is very good agreement. Simulations within the domains of both hydrogels and surrounding solutions also present distributions of the ionic concentrations and electric potential as well as the hydrogel displacement. The effects of various physical parameters on the response behavior of electric‐stimulus responsive hydrogels are discussed in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1514–1531, 2004  相似文献   
175.
For properly chosen elastomer compounds, thermorheological characterization is combined with an examination of the variation of the wet sliding friction with temperature. A conceptual argument leads to the assumption that the wet sliding friction should maximize at the energy dissipation peak associated with the dynamic softening transition at a characteristic frequency determined by the sliding speed and the effective smallest surface asperity scale. The dynamic softening transition is characterized with the peak in tan δ/Gn, where tan δ is the loss tangent, G′ is the elastic modulus, and n is a constant between 0 and 1. The William–Landel–Ferry transform is uncritically applied for extrapolating the position of the peak in tan δ/Gn at high frequencies. Even based on the criterion of tan δ, the results obtained on a concrete surface indicate that the effective smallest asperity scale is of order of 100 μm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2467–2478, 2004  相似文献   
176.
The influence of irradiation and grafting on the crystallinity of three base polymers has been investigated with differential scanning calorimetry. Grafting has the largest effect on the base polymer crystallinity and results in a reduction of the crystallinity. The thermal degradation of the base polymers and grafted films has been investigated with thermogravimetric analysis. The extent of the fluorination of the base polymer, the irradiation method, and the graft level all influence the thermal degradation and its activation energy. It is proposed that the variation of the chain lengths of the grafted polystyrene chains is actually a primary underlying factor responsible for the influence of these various parameters on the degradation process. The first results of a comparative thermal analysis of some fuel‐cell membranes are also presented, and the promise and shortcomings of this method are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2612–2624, 2004  相似文献   
177.
Microcapsulation is a technology that enwrapped the solid or liquid or some gas matter with membrane materials to form microparticles(i.e.microcapsules). The materials of microcapsule is composed of naturnal polymers or modified naturnal polymers or synthesized polymers. The water-soluble core matter can only use oil-soluble wall materials, and vice versa.Synthesized methods of polymer microcapsulesSynthesized methods with monomers as raw materialsThis kind of methods include suspension polymerization, emulsion polymerization, dispersal polymerization, precipitation polymerization,suspension condensation polymerization, dispersal condensation polymerization, deposition condensation polymerization, interface condensation polymerization, and so on.Synthesized methods with polymers as raw materialsThese methods are suspension cross-linked polymerization, coacervation phase separation,extraction with solvent evaporation, polymer deposition, polymer chelation, polymer gel,solidification of melting polymer, tray-painted ways, fluidized bed ways, and so forth.Polymer materials to synthesize microcapsules2.1. Naturnal polymer materialsThe characteristics of this kind of materials are easy to form membrane, good stability and no toxicity. The polymer materials include lipids(liposome), amyloses, proteins, plant gels, waxes, etc.2.2. Modified polymer materialsThe characteristics of these materials are little toxicity, high viscidity(viscosity), soluble salt materials. But they cannot be used in water, acidic environment and high temperature environment for a long time. The materials include all kind of derivants of celluloses.2.3. Synthesized polymer materialsThe characteristics of the materials are easy to form membrane, good stability and adjustment of membrane properties. The synthesized polymer materials include degradable polymers(PLA, PGA,PLGA, PCL, PHB, PHV, PHA, PEG, PPG and the like) and indegradable polymers(PA, PMMA,PAM, PS, PVC, PB, PE, PU, PUA, PVA and otherwise).The applications of polymer microcapsules in cell technologyThe "artificial cell" is the biological active microcapsule used in biological and medical fields.The applications of cells (including transgenic cells, the same as artificial cells) technology include several aspects as follows:3.1. Microcapsulation of artificial red cell3.2. Microcapsule of artificial cell of biological enzyme3.3. Microcapsule of artificial cell of magnetic material3.4. Microcapsule of artificial cell of active carbon3.5. Microcapsule of active biological cell  相似文献   
178.
2,5-Disubstituted oxazoles were prepared conveniently by treatment of aromatic α-methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.  相似文献   
179.
Metabolites of A Novel Antibiotic Bitespiramycin in Rat Urine and Bile   总被引:3,自引:0,他引:3  
A sensitive analytical method to identify active metabolites of bitespiramycin in rat urine and bile was developed by liquid chromatography-electrospray ionization tandem mass spectrometry(LC/ESI-MS^n).Bitespiramycin and its major active metabolites in rat urine and bile were isolated and identified as M1 serial(spiramycin Ⅰ,Ⅱ,Ⅲ),M2 serial(platenomycin A1,josamycin and leucomycin A1) and M3 serial(deisovalerylplatenomycin A1,deisovaleryljosamycin,deisovalerylleucomycin A1).  相似文献   
180.
Baker‘s yeast mediated reduction of optically active diketone is described. The two keto groups are efficiently differentiated and the ee value of the recovered material is considerably raised. It affords highly optically active key intermediates efficiently for the synthesis of natural polyhydroxylated agarofuran products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号