首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116479篇
  免费   5623篇
  国内免费   5378篇
化学   53727篇
晶体学   1376篇
力学   8426篇
综合类   383篇
数学   36353篇
物理学   27215篇
  2024年   70篇
  2023年   571篇
  2022年   1013篇
  2021年   1169篇
  2020年   1312篇
  2019年   1375篇
  2018年   11323篇
  2017年   11167篇
  2016年   7542篇
  2015年   2526篇
  2014年   2353篇
  2013年   3098篇
  2012年   7018篇
  2011年   13887篇
  2010年   8104篇
  2009年   8448篇
  2008年   9361篇
  2007年   11132篇
  2006年   2542篇
  2005年   3278篇
  2004年   3101篇
  2003年   3247篇
  2002年   2366篇
  2001年   1312篇
  2000年   1152篇
  1999年   920篇
  1998年   838篇
  1997年   676篇
  1996年   766篇
  1995年   574篇
  1994年   503篇
  1993年   493篇
  1992年   420篇
  1991年   401篇
  1990年   310篇
  1989年   283篇
  1988年   240篇
  1987年   210篇
  1986年   215篇
  1985年   222篇
  1984年   154篇
  1983年   108篇
  1982年   117篇
  1981年   97篇
  1980年   103篇
  1979年   106篇
  1978年   78篇
  1977年   54篇
  1976年   58篇
  1973年   71篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
31.
Dioscin (DIS), one of the most abundant bioactive steroidal saponins in Dioscorea sp., is used as a complementary medicine to treat coronary disease and angina pectoris in China. Although the pharmacological activities and pharmacokinetics of DIS have been well demonstrated, information regarding the final metabolic fates is very limited. This study investigated the in vivo metabolic profiles of DIS after oral administration by ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry method. The structures of the metabolites were identified and tentatively characterized by means of comparing the molecular mass, retention time and fragmentation pattern of the analytes with those of the parent compound. A total of eight metabolites, including seven phase I and one phase II metabolites, were detected and tentatively identified for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. In addition, a possible metabolic pathway on the biotransformation of DIS in vivo was proposed. This study provides valuable and new information on the metabolism of DIS, which will be helpful for further understanding its mechanism of action. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
32.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well-dispersed photoactive Cu-[O]-Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   
33.
34.
35.
36.
We give the form of the output function in Ginsburg’s machine in which the input and output dictionaries are abelian groups and the transition function is of a special form.  相似文献   
37.
38.
Four kinds of red phosphorescent organic light-emitting devices were fabricated and compared to investigate the effect of interfacial layers for hole transport and electron injection. 1 nm-thick LiF in the device A and C and 1 nm-thick Cs2CO3 in the device B and D were deposited as an electron injection layer between the anode and the electron transport layer, and 5 nm-thick layer of dipyrazion[2,3-f:2′,2′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile[HATCN] was inserted as a hole transport interfacial layer between the hole injection layer and the hole transport layer only in the device C and D. Under a luminance of 1000 cd/m2, the power efficiencies were 7.6 lm/W and 8.5 lm/W in the device A and B, and 8.6 lm/W and 13.4 lm/W in the device C and D. The quantum efficiency of the device D was 15.8% under 1000 cd/m2 which was somewhat lower than those of the device A and C, but a little higher than that of the device B. The luminance of the device D was much higher than those of the other devices at a given votage. The luminance of the device D at 7 V was 23,710 cd/m2, which was 13.0, 3.4, and 4.0 times higher than those of the device A, B, and C at the same voltage, respectively.  相似文献   
39.
Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing.  相似文献   
40.
Planar luminogens have encountered difficulties in overcoming intrinsic aggregation-caused emission quenching by intermolecular π-π stacking interactions. Although excited-state double-bond reorganization (ESDBR) can guide us on designing planar aggregation-induced emission (AIE) luminogens (AIEgens), its mechanism has yet been elucidated. Major challenges in the field include methods to efficiently restrict ESDBR and enhance AIE performance without using bulky substituents (e.g., tetraphenylethylene and triphenylamine). In this study, we rationally developed fluoro-substituent AIEgens with stronger intermolecular H-bonding interaction for restricted molecular motions and increased crystal density, leading to decreased nonradiative decay rate by one order of magnitude. The adjusted ESDBR properties also show a corresponding response to variation in viscosity. Furthermore, their aggregation-induced reactive oxygen species (ROS) generations have been discovered. The application of such planar AIEgen in treating multidrug-resistant bacteria has been demonstrated in a mouse model. The relationship between ROS generation and distinct E/Z-configurational stacking behaviors have been further understood, providing a design principle for synthesizing planar AIEgen-based photosensitizers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号