首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1510篇
  免费   34篇
  国内免费   5篇
化学   1116篇
晶体学   9篇
力学   34篇
综合类   1篇
数学   197篇
物理学   192篇
  2023年   13篇
  2022年   30篇
  2021年   49篇
  2020年   42篇
  2019年   33篇
  2018年   30篇
  2017年   34篇
  2016年   47篇
  2015年   35篇
  2014年   51篇
  2013年   84篇
  2012年   91篇
  2011年   101篇
  2010年   67篇
  2009年   60篇
  2008年   86篇
  2007年   89篇
  2006年   68篇
  2005年   74篇
  2004年   66篇
  2003年   41篇
  2002年   51篇
  2001年   14篇
  2000年   14篇
  1999年   10篇
  1998年   10篇
  1997年   13篇
  1996年   14篇
  1995年   17篇
  1994年   12篇
  1993年   16篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   8篇
  1988年   11篇
  1987年   13篇
  1985年   4篇
  1983年   12篇
  1982年   11篇
  1981年   9篇
  1980年   8篇
  1979年   4篇
  1978年   10篇
  1977年   5篇
  1976年   10篇
  1975年   5篇
  1974年   8篇
  1970年   4篇
  1955年   3篇
排序方式: 共有1549条查询结果,搜索用时 0 毫秒
81.
82.
Abstract

In this review structural parameters of forty complexes with an inner coordination sphere of Pt(η2-P2L)(η2-S2L) are analyzed and classified These complexes crystallize in three crystal systems: orthorhombic (four examples), triclinic (six examples) and monoclinic (thirty examples). The organodiphosphines create four- (PCP), five- (PC2P), six- (PC3P) and seven- (PC4P) membered metallocyclic rings with mean P-Pt-P bite angle values of 72.5° (PCP) < 85.3° (PC2P) < 93.0° (PC3P) < 97.4° (PC4P). The dithiolates create four- (SCS), five- (SC2S), six- (SC3S; SCSCS; SPNPS; SPCPS) and seven- (SC4S) membered metallocyclic rings with mean S-Pt-S bite angle values of 74.5° (SCS) < 85.8° (SCSCS) < 87.0° (SPNPS) < 89.0° (SC2S) < 92.3° (SC4S) < 93.5° (SC3S) < 97.5° (SPCPS). The mean Pt-P and Pt-S bond distances are 2.257 and 2.328?Å, respectively. The data are compared with those found in complexes with inner coordination spheres of Pt(PL)2(SL)2, Pt(PL)22-S2L) and Pt(η2-P2L)(SL)2.  相似文献   
83.
A study on the synthesis and mechanistical aspects of formation of 3-methyl-5-oxo-3-pyrazolin-1-carboxamide (MOPC) starting from S-methylisothiosemicarbazide hydrogen iodide and methyl acetoacetate was performed. In the alkaline aqueous solution, the intermediate methyl acetoacetate S-methylisothiosemicarbazone undergoes substitution of CH3S? anion by hydroxide anion, cyclization, carbanion formation, and elimination of methanol, thus yielding corresponding Na-enolate salt of pyrazol-5-one derivative. The structure of the compound obtained after protonation of the formed enolate salt was determined by means of spectroscopic techniques and single-crystal X-ray diffraction analysis. The mechanism of conversion of methyl acetoacetate S-methylisothiosemicarbazone into MOPC was investigated by means of the B3LYP functional, and it was found that the reaction is thermodynamically controlled.  相似文献   
84.
We report on an ultrasensitive label-free lectin-based impedimetric biosensor for the determination of the sialylated glycoproteins fetuin and asialofetuin. A sialic acid binding agglutinin from Sambucus nigra I was covalently immobilised on a mixed self-assembled monolayer (SAM) consisting of 11-mercaptoundecanoic acid and 6-mercaptohexanol. Poly(vinyl alcohol) was used as a blocking agent. The sensor layer was characterised by atomic force microscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The biosensor exhibits a linear range that spans 7 orders of magnitude for both glycoproteins, with a detection limit as low as 0.33 fM for fetuin and 0.54 fM for asialofetuin. We also show, by making control experiments with oxidised asialofetuin, that the biosensor is capable of quantitatively detecting changes in the fraction of sialic acid on glycoproteins. We conclude that this work lays a solid foundation for future applications of such a biosensor in terms of the diagnosis of diseases such as chronic inflammatory rheumatoid arthritis, genetic disorders and cancer, all of which are associated with aberrant glycosylation of protein biomarkers.
Figure
Key aspects of the biosensor: 1) mixed SAM formation, 2) immobilisation of lectin & blocking and 3) a glycoprotein recognition.  相似文献   
85.
Oxidative stress plays a key role in the pathophysiology of many diseases. Hydroxyl radical is the oxidative species most commonly causing damage to cells. The aim of this work was to optimize the method for antioxidant activity determination on a model lipophilic geranylated flavanone, diplacone. This method uses protection of plasmid DNA from oxidation by a hydroxyl radical generated by the Fenton reaction involving oxidation of metal ions using H2O2 and ascorbate. The method was optimized for lipophilic compounds using several solvents and co-solvents. It was found that (2-hydroxypropyl)-β-cyclodextrin (0.1 mass % aq. sol.) is the best co-solvent for our model lipophilic compound to measure the antioxidant activity by the method presented. Other solvents, namely dimethyl sulfoxide, Cremophor EL® (0.1 mass % aq. sol.), ethanol, and methanol, were not suitable for the determination of the antioxidant activity by the method described. Tween 80 (0.1 mass % aq. sol.) and a mixture of 10 vol. % ethanol and 9 mass % bovine serum albumin (aq. sol.) significantly decreased the antioxidant activity of the model lipophilic compound and thus were not suitable for this method.  相似文献   
86.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   
87.
The synthesis and photophysical properties of two novel multichromophoric compounds is presented. Their molecular design comprises a carbonyl‐bridged triarylamine core and either naphthalimides or 4‐(5‐hexyl‐2,2′‐bithiophene)naphthalimides as second chromophore in the periphery. The lateral chromophores are attached to the core via an amide linkage and a short alkyl spacer. The synthetic approach demonstrates a straightforward functionalization strategy for carbonyl‐bridged triarylamines. Steady‐state and time‐resolved spectroscopic investigations of these compounds, in combination with three reference compounds, provide clear evidence for energy transfer in both multichromophoric compounds. The direction of the energy transfer depends on the lateral chromophore used. Furthermore, the compound bearing the lateral 4‐(bithiophene)naphthaimides is capable of forming fluorescent gels at very low concentrations in the sub‐millimolar regime whilst retaining its energy transfer properties.  相似文献   
88.
This investigation aimed to study a “green” non-toxic biodegradable copper corrosion inhibitor in an acidic sodium sulphate solution. The methods used in the investigation of cysteine as a copper corrosion inhibitor in an acidic sodium sulphate solution were: potentiodynamic measurements, open circuit potential measurements, and chronoamperometric measurements. Optical microscopy was used in addition to electrochemical methods. Potentiodynamic measurements show that cysteine has good inhibitory properties in an acidic medium. Polarisation curves indicate that the presence of cysteine in a sulphate solution decreases the current density and that using various cysteine concentrations results in the formation of a protective film on the surface of the electrode due to the formation of the Cu(I)-cys complex. These results are confirmed by chronoamperometric measurements. Furthermore, it is clear from microphotographs that a protective film does form on copper electrode in the presence of cysteine. The Langmuir adsorption isotherm indicates that cysteine is chemisorbed on the surface of the electrode.  相似文献   
89.
We investigate activation of carbon dioxide by singly charged hydrated magnesium cations Mg .+(H2O)n, through infrared multiple photon dissociation (IRMPD) spectroscopy combined with quantum chemical calculations. The spectra of [MgCO2(H2O)n].+ in the 1250–4000 cm?1 region show a sharp transition from n=2 to n=3 for the position of the CO2 antisymmetric stretching mode. This is evidence for the activation of CO2 via charge transfer from Mg .+ to CO2 for n≥3, while smaller clusters feature linear CO2 coordinated end‐on to the metal center. Starting with n=5, we see a further conformational change, with CO2.? coordination to Mg2+ gradually shifting from bidentate to monodentate, consistent with preferential hexa‐coordination of Mg2+. Our results reveal in detail how hydration promotes CO2 activation by charge transfer at metal centers.  相似文献   
90.
Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc–tyrosine or Fmoc–phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc‐protected amino acid, namely, 2‐{[(9H‐fluoren‐9‐ylmethoxy)carbonyl](methyl)amino}‐3‐{4‐[(2‐hydroxypropan‐2‐yl)oxy]phenyl}propanoic acid or N‐fluorenylmethoxycarbonyl‐O‐tert‐butyl‐N‐methyltyrosine, Fmoc‐N‐Me‐Tyr(t‐Bu)‐OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single‐crystal X‐ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N‐Fmoc‐phenylalanine [Draper et al. (2015). CrystEngComm, 42 , 8047–8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H…H, C…H/H…C and O…H/H…O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen‐bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C—H…O, C—H…π, (fluorenyl)C—H…Cl(I), C—Br…π(fluorenyl) and C—I…π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long‐Range Synthon Aufbau Modules, further supported by energy‐framework calculations, are discussed. Furthermore, the relevance of Fmoc‐based supramolecular hydrogen‐bonding patterns in biocomplexes are emphasized, for the first time.  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号