首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1704篇
  免费   43篇
  国内免费   4篇
化学   1228篇
晶体学   17篇
力学   30篇
数学   93篇
物理学   383篇
  2021年   9篇
  2019年   25篇
  2018年   11篇
  2016年   27篇
  2015年   19篇
  2014年   36篇
  2013年   68篇
  2012年   71篇
  2011年   93篇
  2010年   43篇
  2009年   45篇
  2008年   100篇
  2007年   110篇
  2006年   118篇
  2005年   115篇
  2004年   106篇
  2003年   76篇
  2002年   53篇
  2001年   31篇
  2000年   17篇
  1999年   28篇
  1998年   16篇
  1997年   21篇
  1996年   11篇
  1995年   17篇
  1994年   17篇
  1993年   21篇
  1992年   21篇
  1991年   21篇
  1990年   10篇
  1989年   11篇
  1988年   11篇
  1987年   12篇
  1986年   12篇
  1985年   21篇
  1984年   35篇
  1983年   17篇
  1982年   25篇
  1981年   22篇
  1980年   19篇
  1979年   24篇
  1978年   21篇
  1977年   22篇
  1976年   18篇
  1975年   23篇
  1974年   13篇
  1973年   12篇
  1972年   10篇
  1970年   8篇
  1968年   8篇
排序方式: 共有1751条查询结果,搜索用时 15 毫秒
61.
Studies on the role of oxygen vacancy in structural change of nonstoichiometric perovskites and a property of oxygen-deficient perovskite-related K2NiF4 compounds are reviewed.The structural changes on which the authors focused are cation ordering and lattice distortion. The relationship between the distortion and oxygen vacancy was investigated by comparing the structures of Sr2(Sr1-xMx)TaO6-d (M = Ca2+ and Nd3+) solid solutions. It was found that distortion of a perovskite-type lattice decreased with an increasing amount of oxygen vacancies. In order to investigate the relationship between the cation ordering on octahedral sites and oxygen vacancy, structures of stoichiometric Sr2-xLaxCo1-yTa1+yO6 and oxygen-deficient Sr2-xLaxMg1-yTa1+yO6-d solid solutions were compared. The authors' work reveals that the cation ordering affects the amount of oxygen vacancies in addition to cation charge and size.  相似文献   
62.
The 13C NMR chemical shifts of all the carbons in an a2u type iron(III) porphyrin radical cation, [Fe(TPP)Cl]+, have been determined for the first time by the titration method as well as by the chemical shift correlation; they are 2230, 1050, and -1910 ppm for the alpha-pyrrole, beta-pyrrole, and meso carbon atoms, respectively.  相似文献   
63.
A series of naphthalimide (NI)- and 5-bromocytosine ((br)C)-modified oligodeoxynucleotides (ODNs) were prepared, and their lifetimes of the charge-separated states during the photosensitized one-electron oxidation of DNA were measured. Various lifetimes of the charge-separated states were observed depending on the sequence and the incorporation sites of (br)C, and the oxidation potential of G in the (br)C:G base-pair relative to that of G in the C:G base-pair and in the GGG sequence was determined by comparing the lifetimes of the charge-separated states. The change in the cytosine C5 hydrogen to bromine resulted in a 24 mV increase in the oxidation potential of G in the (br)C:G base-pair as compared to that of G in the C:G base-pair, the value of which is comparable to a 58 mV decrease in the oxidation potential of G in the GGG sequence. These results clearly demonstrate that hole transfer in DNA can be controlled through hydrogen bonding by introducing a substituent on the cytosine.  相似文献   
64.
2,2[prime or minute]-3,3[double prime]-Terthiophene derivatives undergo photochemically reversible cyclization and cycloreversion reactions. The absorption peak wavelength changed systematically with substitution of the phenyl rings at 5-, 5[prime or minute]- and 5[double prime]-positions of the thiophene rings, which indicates re-routing of the [small pi]-conjugation system.  相似文献   
65.
Protein kinases are important enzymes controlling the majority of cellular signaling events via a transfer of the gamma-phosphate of ATP to a target protein. Even after many years of study, the mechanism of this reaction is still poorly understood. Among many factors that may be responsible for the 1011-fold rate enhancement due to this enzyme, the role of the conserved aspartate (Asp166) has been given special consideration. While the essential presence of Asp166 has been established by mutational studies, its function is still debated. The general base catalyst role assigned to Asp166 on the basis of its position in the active site has been brought into question by the pH dependence of the reaction rate, isotope measurements, and pre-steady-state kinetics. Recent semiempirical calculations have added to the controversy surrounding the role of Asp166 in the catalytic mechanism. No major role for Asp166 has been found in these calculations, which have predicted the reaction process consisting of an early transfer of a substrate proton onto the phosphate group. These conclusions were inconsistent with experimental observations. To address these differences between experimental results and theory with a more reliable computational approach and to provide a theoretical platform for understanding catalysis in this important enzyme family, we have carried out first-principles structural and dynamical calculations of the reaction process in cAPK kinase. To preserve the essential features of the reaction, representations of all of the key conserved residues (82 atoms) were included in the calculation. The structural calculations were performed using the local basis density functional (DFT) approach with both hybrid B3LYP and PBE96 generalized gradient approximations. This kind of calculation has been shown to yield highly accurate structural information for a large number of systems. The optimized reactant state structure is in good agreement with X-ray data. In contrast to semiempirical methods, the lowest energy product state places the substrate proton on Asp166. First-principles molecular dynamics simulations provide additional support for the stability of this product state. The latter also demonstrate that the proton transfer to Asp166 occurs at a point in the reaction where bond cleavage at the PO bridging position is already advanced. This mechanism is further supported by the calculated structure of the transition state in which the substrate hydroxyl group is largely intact. A metaphoshate-like structure is present in the transition state, which is consistent with the X-ray structures of transition state mimics. On the basis of the calculated structure of the transition state, it is estimated to be 85% dissociative. Our analysis also indicates an increase in the hydrogen bond strength between Asp166 and substrate hydroxyl and a small decrease in the bond strength of the latter in the transition state. In summary, our calculations demonstrate the importance of Asp166 in the enzymatic mechanism as a proton acceptor. However, the proton abstraction from the substrate occurs late in the reaction process. Thus, in the catalytic mechanism of cAPK protein kinase, Asp166 plays a role of a "proton trap" that locks the transferred phosphoryl group to the substrate. These results resolve prior inconsistencies between theory and experiment and bring new understanding of the role of Asp166 in the protein kinase catalytic mechanism.  相似文献   
66.
67.
68.
A new synthetic method for functionally substituted β-trimethylsilyl-α,β-unsaturated carbonyl compounds from 1-methoxy-3-phenylthio-3-trimethylsilyl-1-propene is described.  相似文献   
69.
The common left-half [C31-C33(OC1-C7)-C40] part of pectenotoxins has been synthesized convergently from the C31-C35, C36-C40, and C1-C7 parts. The C31-C35 part, prepared via a new route shorter than our previous route, was coupled with the C36-C40 part through reductive lithiation and addition reactions to give an adduct stereoselectively, which was converted to a cyclic acetal corresponding to the C31-C40 part. The left-half was synthesized by a three-step process including esterification of the C31-C40 part with the C1-C7 part.  相似文献   
70.
SrCu2(PO4)2 was prepared by the solid-state method at 1153 K. Its structure was solved by direct methods in the space group Pccn (No. 56) with Z = 8 from synchrotron X-ray powder diffraction data measured at room temperature. Structure parameters were then refined by the Rietveld method to obtain the lattice parameters, a = 7.94217(8) A, b = 15.36918(14) A, and c = 10.37036(10) A. SrCu2(PO4)2 presents a new structure type and is built up from Sr2O16 and Cu1Cu2O8 units with Cu1...Cu2 = 3.256 A. The magnetic properties of SrCu2(PO4)2 were investigated by magnetic susceptibility, magnetization up to 65 T, Cu nuclear quadrupole resonance (NQR), electron-spin resonance, and specific heat measurements. With spin-dimer analysis, it was shown that the two strongest spin-exchange interactions between Cu sites result from the Cu1-O...O-Cu2 and Cu2-O...O-Cu2 super-superexchange paths with Cu1...Cu2 = 5.861 A and Cu2...Cu2 = 5.251 A, and the superexchange associated with the structural dimer Cu1Cu2O8 is negligible. The magnetic susceptibility data were analyzed in terms of a linear four-spin cluster model, Cu1-Cu2-Cu2-Cu1 with -2J(1)/kB = 82.4 K for Cu1-Cu2 and -2J(2)/k(B) = 59 K for Cu2-Cu2. A spin gap deduced from this model (Delta/kB = 63 K) is in agreement with that obtained from the Cu NQR data (Delta/kB = 65 K). A one-half magnetization plateau was observed between approximately 50 and 63 T at 1.3 K. Specific heat data show that SrCu2(PO4)2 does not undergo a long-range magnetic ordering down to 0.45 K. SrCu2(PO4)2 melts incongruently at 1189 K. We also report its vibrational properties studied with Raman spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号