首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   867篇
  免费   24篇
  国内免费   3篇
化学   465篇
晶体学   15篇
力学   38篇
数学   67篇
物理学   309篇
  2023年   14篇
  2022年   16篇
  2021年   23篇
  2020年   23篇
  2019年   25篇
  2018年   24篇
  2017年   20篇
  2016年   25篇
  2015年   12篇
  2014年   29篇
  2013年   41篇
  2012年   33篇
  2011年   41篇
  2010年   30篇
  2009年   26篇
  2008年   38篇
  2007年   42篇
  2006年   41篇
  2005年   35篇
  2004年   33篇
  2003年   28篇
  2002年   12篇
  2001年   21篇
  2000年   16篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   12篇
  1994年   12篇
  1993年   11篇
  1992年   8篇
  1991年   14篇
  1990年   13篇
  1989年   11篇
  1988年   14篇
  1987年   11篇
  1986年   8篇
  1985年   14篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   12篇
  1980年   13篇
  1978年   7篇
  1977年   6篇
  1976年   3篇
  1974年   6篇
  1973年   5篇
  1933年   3篇
排序方式: 共有894条查询结果,搜索用时 0 毫秒
31.
Journal of Thermal Analysis and Calorimetry - In recent decades, the growth of heat transfer using nanomaterials in the conventional base fluid has caught the attention of researchers...  相似文献   
32.
33.
Thermomechanical cycles including programming, cooling, unloading and heating to trigger the 1WE were examined for a shape memory polymer (SMP), Tecoflex® (TFX EG-72D). Cycles were performed at 60°C with 50% and 225% strains and the recovery time of 10 min. Strains evolving with time were estimated during the thermomechanical treatments for the total 44 cycles using 50% strains and the total 50 cycles using 225% strains. Recovery ratios for 50% strains and 225% were also estimated. It turns out that programming, cooling, unloading and heating to trigger the 1WE causes an increase of irreversible strain and is associated with a corresponding decrease of the intensity of the 1WE in particular during the first thermomechanical cycles. In parallel scanning electron microscopic study using secondary electron imaging shows a very slight wavy surface structure evolved during cycling.  相似文献   
34.
35.
36.
37.
Efficient sunlight-responsive BiOBr–CoWO4 heterostructured nanocomposite photocatalysts were prepared via a chemical precipitation route at 100°C in 4 hours. The prepared BiOBr–CoWO4 heterostructures were characterized for phase identification, chemical composition, surface morphology, optical properties and surface area using various techniques. The X-ray diffraction pattern of the BiOBr–CoWO4 nanocomposite was composed of diffraction peaks equivalent to both the tetragonal phase of BiOBr and the monoclinic phase of CoWO4 nanoparticles. X-ray photoelectron spectral study of the BiOBr–CoWO4 nanocomposite revealed orbitals of both BiOBr and CoWO4 compounds. Transmission electron microscopy images revealed that spherical particles of CoWO4 (20–25 nm) were dispersed on the surface of BiOBr. UV–visible–near-infrared spectral study of the BiOBr–CoWO4 nanocomposite showed good visible-light absorption. Among the manufactured materials, BiOBr–CoWO4-2 nanocomposite showed better charge carrier separation efficiency, as demonstrated by photoluminescence and time-resolved fluorescence. To study the practical utility of the prepared materials, their photocatalytic capability was examined for the degradation of rhodamine B (RhB) aqueous solution under sunlight irradiation. The photodegradation results showed that BiOBr–CoWO4-2 nanocomposite degraded 98.69% RhB solution and the degradation constant was 0.067 min−1, which was 5.6 and 22.5 times larger than that of pure BiOBr and CoWO4 nanoparticles, respectively, after 60 minutes of sunlight irradiation. The superior photoactivity was facilitated by electron–hole pair separation and transfer driven by the heterostructure interface between BiOBr particles and CoWO4 nanoparticles. The removal of RhB was initiated by photogenerated h+, O2• − and OH reactive species based on the scavenger effect.  相似文献   
38.
X‐ray photoelectron spectroscopy (XPS) is used for elemental identification and quantification in a number of fields, and the optimization of XPS performance can help in making better use of the limited XPS tool availability. In the field of extreme ultraviolet (EUV) lithography, one of the requirements is having a clean vacuum environment to minimize contamination of the EUV optics. EUV resist outgassing is viewed as one of the main issues that could affect the vacuum environment. There is a program underway to measure the relative contamination rates from different resists following the ASML (provider of lithography systems) approved protocols for witness plate testing. One of the key steps is the XPS measurement of residue on the optics after cleaning. The role of XPS in quantification of species that adhere to the ruthenium‐coated silicon witness plate sample is discussed. The various XPS tool parameters like the pass energy and source setting were optimized for our application of witness plate analysis. The statistics of our XPS tool were studied, and combined with the fundamental XPS equations, a simple mathematical model was developed to optimize the number of scans for the various elements of interest in our witness plate study. Using the optimized number of scans, the acquisition time to measure the contaminant elements to a precision better than 0.1 at.% was minimized. The model devised in the paper can be adapted to other XPS measurements requiring different levels of precision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
39.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   
40.
The objective of the present investigation was to develop microemulsion-based transdermal systems of highly water soluble drug, Atenolol, by quality by design technique. Atenolol-loaded W/O microemulsions were optimized using D-optimal design with concentrations of oil, surfactants mixture, and water as independent variables, which was converted into microemulsion-based gel (MBG). The results of in vitro permeation of the optimized batch of Atenolol-loaded MBG revealed significant increase in permeability parameters as compared to its convention gel. All results suggested suitability of W/O type MEs as carriers for transdermal delivery of highly water soluble drug, Atenolol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号