首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   16篇
  国内免费   4篇
化学   143篇
力学   2篇
数学   48篇
物理学   81篇
  2023年   2篇
  2022年   3篇
  2021年   13篇
  2020年   10篇
  2019年   10篇
  2018年   8篇
  2017年   9篇
  2016年   13篇
  2015年   10篇
  2014年   7篇
  2013年   12篇
  2012年   18篇
  2011年   22篇
  2010年   11篇
  2009年   6篇
  2008年   23篇
  2007年   16篇
  2006年   18篇
  2005年   11篇
  2004年   15篇
  2003年   12篇
  2002年   4篇
  2000年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1958年   2篇
排序方式: 共有274条查询结果,搜索用时 0 毫秒
171.
172.
The synthesis of heteroditopic macrocyclic ureido-receptors is described. NMR studies show the formation of self-organized oligomeric superstructures. Membrane transport experiments show a direct relation between the self-assembling and the transport properties of these molecular information transfer devices. The self-organization of these receptors may provide the first evidence for the possible hybrid transport carrier versus channel mechanisms in liquid membranes.  相似文献   
173.
Nature creates aquaporins to effectively transport water, rejecting all ions including protons. Aquaporins (AQPs) has brought inspiration for the development of Artificial Water Channels (AWCs). Imidazole-quartet (I-quartet) was the first AWC that enabled to self-assemble a tubular backbone for rapid water and proton permeation with total ion rejection. Here, we report the discovery of bis-alkylureido imidazole compounds, which outperform the I-quartets by exhibiting ≈3 times higher net and single channel permeabilities (107 H2O/s/channel) and a ≈2–3 times lower proton conductance. The higher water conductance regime is associated to the high partition of more hydrophobic bis-alkylureido channels in the membrane and to their pore sizes, experiencing larger fluctuations, leading to an increase in the number of water molecules in the channel, with decreasing H-bonding connectivity. This new class of AWCs will open new pathways toward scalable membranes with enhanced water transport performances.  相似文献   
174.
175.
Dynamic covalent polymers—dynamers—are adaptive materials that offer timely variant adaptive macroscopic organization across extended scales. In the current study, imine exchange reactions and fluorescence transfer can occur at the interfaces between various solutions and solid state dynameric films. The fluorescence quenching upon imine formations for designed fluorogen was successfully demonstrated, and this tunable fluorescence was further used to study the re-composition of a solid film. Moreover, the dynamic covalent films also exhibited responsiveness to competing amines and acid/base conditions, both in solutions and solid film–solution interface. This work can provide more insights into interface dynamic chemistry and holds great potential for further applications in optical and biomedical materials.  相似文献   
176.
177.
178.
179.
Academic nanoscale science and engineering (NSE) research provides a foundation for nanotechnology innovation reflected in patents. About 60% or about 50,000 of the NSE-related patents identified by “full-text” keyword searching between 1976 and 2004 at the United States Patent and Trademark Office (USPTO) have an average of approximately 18 academic citations. The most cited academic journals, individual researchers, and research articles have been evaluated as sources of technology innovation in the NSE area over the 28-year period. Each of the most influential articles was cited about 90 times on the average, while the most influential author was cited more than 700 times by the NSE-related patents. Thirteen mainstream journals accounted for about 20% of all citations. Science, Nature and Proceedings of the National Academy of Sciences (PNAS) have consistently been the top three most cited journals, with each article being cited three times on average. There is another kind of influential journals, represented by Biosystems and Origin of Life, which have very few articles cited but with exceptionally high frequencies. The number of academic citations per year from ten most cited journals has increased by over 17 times in the interval (1990–1999) as compared to (1976–1989), and again over 3 times in the interval (2000–2004) as compared to (1990–1999). This is an indication of increased used of academic knowledge creation in the NSE-related patents.  相似文献   
180.
Trends for nanotechnology development in China, Russia, and India   总被引:1,自引:0,他引:1  
China, Russia, and India are playing an increasingly important role in global nanotechnology research and development (R&D). This paper comparatively inspects the paper and patent publications by these three countries in the Thomson Science Citation Index Expanded (SCI) database and United States Patent and Trademark Office (USPTO) database (1976–2007). Bibliographic, content map, and citation network analyses are used to evaluate country productivity, dominant research topics, and knowledge diffusion patterns. Significant and consistent growth in nanotechnology papers are noted in the three countries. Between 2000 and 2007, the average annual growth rate was 31.43% in China, 11.88% in Russia, and 33.51% in India. During the same time, the growth patterns were less consistent in patent publications: the corresponding average rates are 31.13, 10.41, and 5.96%. The three countries’ paper impact measured by the average number of citations has been lower than the world average. However, from 2000 to 2007, it experienced rapid increases of about 12.8 times in China, 8 times in India, and 1.6 times in Russia. The Chinese Academy of Sciences (CAS), the Russian Academy of Sciences (RAS), and the Indian Institutes of Technology (IIT) were the most productive institutions in paper publication, with 12,334, 6,773, and 1,831 papers, respectively. The three countries emphasized some common research topics such as “Quantum dots,” “Carbon nanotubes,” “Atomic force microscopy,” and “Scanning electron microscopy,” while Russia and India reported more research on nano-devices as compared with China. CAS, RAS, and IIT played key roles in the respective domestic knowledge diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号