首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   17篇
  国内免费   2篇
化学   157篇
力学   6篇
数学   72篇
物理学   41篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   19篇
  2013年   13篇
  2012年   16篇
  2011年   27篇
  2010年   11篇
  2009年   16篇
  2008年   20篇
  2007年   19篇
  2006年   22篇
  2005年   18篇
  2004年   13篇
  2003年   10篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1992年   5篇
  1988年   2篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
51.
Liquid tapping atomic force microscopy was used to study the nonspecific adsorption of horse spleen ferritin at a bare gold surface at single molecule resolution. The majority of ferritin molecules adsorbed irreversible on gold surfaces in accordance with the random sequential adsorption (RSA) mechanism frequently used to describe irreversible adsorption processes. However, the time-resolved data also reveal events that go beyond the RSA model, i.e., lateral mobility and fragility of some molecules, resulting in desorption, chain formation, and subunit dissociation. Scanning effects of the AFM tip were observed, resulting in diminished protein coverage in the scanned area.  相似文献   
52.
Fourier-transform infrared (FT-IR) difference spectroscopy has been proven to be a significant tool in biospectroscopy. In particular, the step-scan technique monitors structural and electronic changes at time resolutions down to a few nanoseconds retaining the multiplex advantage of FT-IR. For the elucidation of the functional mechanisms of proteins, this technique is currently limited to repetitive systems undergoing a rapid photocycle. To overcome this obstacle, we developed a flow-flash experiment in a miniaturised flow channel which was integrated into a step-scan FT-IR spectroscopic setup. As a proof of principle, we studied the rebinding reaction of CO to myoglobin after photodissociation. The use of microfluidics reduced the sample consumption drastically such that a typical step-scan experiment takes only a few 10 ml of a millimolar sample solution, making this method particularly interesting for the investigation of biological samples that are only available in small quantities. Moreover, the flow cell provides the unique opportunity to assess the reaction mechanism of proteins that cycle slowly or react irreversibly. We infer that this novel approach will help in the elucidation of molecular reactions as complex as those of vectorial ion transfer in membrane proteins. The potential application to the oxygen splitting reaction of cytochrome c oxidase is discussed. An erratum to this article can be found at  相似文献   
53.
The influence of 1‐hexene is examined on the kinetics of ethylene copolymerization with a metallocene catalyst in gas phase. A model is derived, which is able to describe a large reaction rate increase due to a small amount of incorporated comonomer. This complexation model describes the measured reaction rates for ethylene and 1‐hexene, and the co‐monomer incorporation. Polymer properties were analyzed, such as comonomer weight fraction. The density, melting point, and molecular weight of the produced polymer decreased with increase in 1‐hexene gas concentration. The in situ 1‐hexene sorption is estimated and follows Henry's law, but seems much higher than reported in the literature.

  相似文献   

54.
55.
56.
Ladderane lipids, containing three or five linearly concatenated cyclobutane moieties, are considered to be unique biomarkers for the process of anaerobic ammonium oxidation, an important link in the oceanic nitrogen cycle. Due to the thermal lability of the strained cyclobutane moieties, the ladderane lipids are difficult to analyze by gas chromatography. A method combining high-performance liquid chromatography coupled to positive ion atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS) was developed for the analysis of the most abundant ladderane lipids, occurring as fatty acids and ether-bound to glycerol. Detection was achieved by selective reaction monitoring of four specific fragmentations per ladderane lipid. Detection limits of 30-35 pg injected on-column and a linear response (r(2) > 0.99) over nearly 3 orders of magnitude were achieved for all compounds. Using this method, these unique ladderane lipids were for the first time identified in a surface sediment from the Gullmarsfjorden, in concentrations ranging from 1.1-5.5 ng/g for the ladderane fatty acids and of 0.7 ng/g for the monoether. It is foreseen that this method will allow the investigation of the occurrence of anaerobic ammonium oxidation in natural settings in much greater detail than before.  相似文献   
57.
We present a high-throughput method to determine rapidly and simultaneously the solubility and the diffusivity of CO(2) in pure solvents and mixtures using segmented flow in a microchannel. Gas bubbles are injected via a T-junction into the liquid stream and the evolution of the bubbles' lengths are followed visually. We measure both solubility and diffusion coefficient from the shrinkage and expansion of the bubbles. The presented method is used to study the physical absorption of CO(2) in various pure solvents and to screen the complete composition space of binary and ternary mixtures.  相似文献   
58.
The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, 'ice-like' and 'liquid-like' features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water.  相似文献   
59.
We present several transformations that can be used to solve the quadratic two-parameter eigenvalue problem (QMEP), by formulating an associated linear multiparameter eigenvalue problem. Two of these transformations are generalizations of the well-known linearization of the quadratic eigenvalue problem and linearize the QMEP as a singular two-parameter eigenvalue problem. The third replaces all nonlinear terms by new variables and adds new equations for their relations. The QMEP is thus transformed into a nonsingular five-parameter eigenvalue problem. The advantage of these transformations is that they enable one to solve the QMEP using existing numerical methods for multiparameter eigenvalue problems. We also consider several special cases of the QMEP, where some matrix coefficients are zero  相似文献   
60.
Linear discrete ill-posed problems of small to medium size are commonly solved by first computing the singular value decomposition of the matrix and then determining an approximate solution by one of several available numerical methods, such as the truncated singular value decomposition or Tikhonov regularization. The determination of an approximate solution is relatively inexpensive once the singular value decomposition is available. This paper proposes to compute several approximate solutions by standard methods and then extract a new candidate solution from the linear subspace spanned by the available approximate solutions. We also describe how the method may be used for large-scale problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号