首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   19篇
  国内免费   3篇
化学   325篇
力学   3篇
数学   77篇
物理学   69篇
  2023年   5篇
  2022年   17篇
  2021年   22篇
  2020年   10篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   23篇
  2015年   20篇
  2014年   9篇
  2013年   28篇
  2012年   46篇
  2011年   38篇
  2010年   24篇
  2009年   16篇
  2008年   25篇
  2007年   24篇
  2006年   23篇
  2005年   29篇
  2004年   25篇
  2003年   22篇
  2002年   19篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1970年   1篇
排序方式: 共有474条查询结果,搜索用时 46 毫秒
461.
462.
463.
Therapeutic effects of interferon-α (IFN-α) are known to be associated with CNS toxicity in humans, and in particular with depression symptoms. Animal models of IFN-α-induced depression (sickness behaviour) have been developed in rodents using various preparations, dosing schedules or routes of administrations. In this work, Manganese Enhanced MRI (MEMRI) has been applied to investigate an experimental model of sickness behaviour induced by administration of IFN-α in rats. IFN-α (3.105 U/kg), or vehicle, was daily administered i.p., for 7 days in rats (n = 20 IFN-α treated and n = 20 controls). After treatment, animals were assigned to behavioural (n = 10 treated, n = 10 control) or MRI (n = 10 treated and n = 10 control) studies. Animals assigned to the MRI study received two repeated i.p. injections of MnCl2, before image acquisition. Images were acquired at 4.7 T using T1 mapping for determination of Mn concentration in brain. After co-registration of T1 maps to a digital brain atlas, differences between brains of treated and untreated animals were assessed pixel-to-pixel by statistical analysis.  相似文献   
464.
A split-pulse spectrometer based on pairs of time-delayed femtosecond pulses can give access to accurate frequency measurements in the extreme ultraviolet (XUV) spectral domain. We demonstrate this approach by measuring the absolute frequency of a single-XUV-photon transition to a bound state of atomic argon excited with the ninth harmonic of an amplified Ti:sapphire laser.  相似文献   
465.
The rate constants for H-atom abstraction (k(H)) from 1,4-cyclohexadiene (CHD), triethylamine (TEA), triisobutylamine (TIBA), and DABCO by the cumyloxyl (CumO(?)) and benzyloxyl (BnO(?)) radicals were measured. Comparable k(H) values for the two radicals were obtained in their reactions with CHD and TIBA whereas large increases in k(H) for TEA and DABCO were found on going from CumO(?) to BnO(?). These differences are attributed to the rate-determining formation of BnO(?) C-H/amine N lone-pair H-bonded complexes.  相似文献   
466.
The solid-phase synthesis of the first example of a new diphosphate AICAR derivative is reported. The new substance is characterized by the presence of a 5'-phosphate group while a second phosphate moiety is installed on a 5-hydroxypentyl chain attached to the 4-N-position of AICAR. Cyclization of the diphosphate derivative by pyrophosphate bond formation allowed for the formation of a novel AICAR-based cyclic ADP-ribose (cADPR) mimic.  相似文献   
467.
Enantioenriched fluorinated heterocycles can be prepared through fluorocyclizations of prochiral indoles (see scheme; Ts=tosyl, Bn=benzyl, Boc=tert-butoxycarbonyl). More than twenty examples for this cascade fluorination-cyclization, which is catalyzed by cinchona alkaloids and employs N-fluorobenzenesulfonimide as the electrophilic fluorine source have been explored, and an unprecedented catalytic asymmetric difluorocyclization has also been identified.  相似文献   
468.
Understanding the chemical vapor deposition (CVD) kinetics of graphene growth is important for advancing graphene processing and achieving better control of graphene thickness and properties. In the perspective of improving large area graphene quality, we have investigated in real-time the CVD kinetics using CH(4)-H(2) precursors on both polycrystalline copper and nickel. We highlighted the role of hydrogen in differentiating the growth kinetics and thickness of graphene on copper and nickel. Specifically, the growth kinetics and mechanism is framed in the competitive dissociative chemisorption of H(2) and dehydrogenating chemisorption of CH(4), and in the competition of the in-diffusion of carbon and hydrogen, being hydrogen in-diffusion faster in copper than nickel, while carbon diffusion is faster in nickel than copper. It is shown that hydrogen acts as an inhibitor for the CH(4) dehydrogenation on copper, contributing to suppress deposition onto the copper substrate, and degrades quality of graphene. Additionally, the evidence of the role of hydrogen in forming C-H out of plane defects in CVD graphene on Cu is also provided. Conversely, resurfacing recombination of hydrogen aids CH(4) decomposition in the case of Ni. Understanding better and providing other elements to the kinetics of graphene growth is helpful to define the optimal CH(4)/H(2) ratio, which ultimately can contribute to improve graphene layer thickness uniformity even on polycrystalline substrates.  相似文献   
469.
Innovative strategies that utilize nanoparticles (NPs) for a better delivery of drugs and to improve their therapeutic efficacy have been widely studied in many clinical fields, including oncology. To develop safe and reliable devices able to reach their therapeutic target, a hierarchical characterization of NP interactions with biological fluids, cells, and whole organisms is fundamental. Unfortunately, this aspect is often neglected and the development of standardized characterization methods would be of fundamental help to better elucidate the potentials of nanomaterials, even before the loading of the drugs. Here, we propose a multimodal in vitro/in vivo/ex vivo platform aimed at evaluating these interactions for the selection of the most promising NPs among a wide series of materials. To set the system, we used non-degradable fluorescent poly(methyl-methacrylate) NPs of different sizes (50, 100, and 200 nm) and surface charges (positive and negative). First we studied NP stability in biological fluids. Then, we evaluated NP interaction with two cell lines of triple-negative breast cancer (TNBC), 4T1, and MDA-MB231.1833, respectively. We found that NPs internalize in TNBC cells depending on their physico-chemical properties without toxic effects. Finally, we studied NP biodistribution in terms of tissue migration and progressive clearance in breast-cancer bearing mice. The use of highly stable poly(methyl-methacrylate) NPs enabled us to track them for a long time in cells and animals. The application of this platform to other nanomaterials could provide innovative suggestions for the development of a systematic method of characterization to select the most reliable nanodrug candidates for biomedical applications.  相似文献   
470.
Molecular dynamics (MD) simulations are a vital tool in chemical research, as they are able to provide an atomistic view of chemical systems and processes that is not obtainable through experiment. However, large‐scale MD simulations require access to multicore clusters or supercomputers that are not always available to all researchers. Recently, scientists have returned to exploring the power of graphics processing units (GPUs) for various applications, such as MD, enabled by the recent advances in hardware and integrated programming interfaces such as NVIDIA's CUDA platform. One area of particular interest within the context of chemical applications is that of aqueous interfaces, the salt solutions of which have found application as model systems for studying atmospheric process as well as physical behaviors such as the Hoffmeister effect. Here, we present results of GPU‐accelerated simulations of the liquid–vapor interface of aqueous sodium iodide solutions. Analysis of various properties, such as density and surface tension, demonstrates that our model is consistent with previous studies of similar systems. In particular, we find that the current combination of water and ion force fields coupled with the ability to simulate surfaces of differing area enabled by GPU hardware is able to reproduce the experimental trend of increasing salt solution surface tension relative to pure water. In terms of performance, our GPU implementation performs equivalent to CHARMM running on 21 CPUs. Finally, we address possible issues with the accuracy of MD simulaions caused by nonstandard single‐precision arithmetic implemented on current GPUs. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号