首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1849篇
  免费   80篇
  国内免费   22篇
化学   1364篇
晶体学   16篇
力学   36篇
数学   303篇
物理学   232篇
  2023年   18篇
  2022年   31篇
  2021年   42篇
  2020年   51篇
  2019年   49篇
  2018年   41篇
  2017年   50篇
  2016年   86篇
  2015年   74篇
  2014年   80篇
  2013年   124篇
  2012年   132篇
  2011年   163篇
  2010年   102篇
  2009年   82篇
  2008年   122篇
  2007年   107篇
  2006年   105篇
  2005年   82篇
  2004年   76篇
  2003年   48篇
  2002年   46篇
  2001年   22篇
  2000年   15篇
  1999年   22篇
  1998年   10篇
  1997年   11篇
  1996年   28篇
  1995年   5篇
  1994年   6篇
  1993年   12篇
  1992年   9篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   9篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1970年   3篇
  1968年   2篇
  1958年   6篇
  1957年   2篇
排序方式: 共有1951条查询结果,搜索用时 15 毫秒
111.
Photolysis of size selected pyrrole clusters has been investigated and compared to the photolysis of an isolated pyrrole molecule. Experimentally, size distributions of different mean cluster sizes (n=3 and n>5) have been prepared in supersonic expansions and the clusters were photolyzed at 243 and 193 nm. The kinetic energy distributions of the H photofragments have been measured. The distributions exhibit a bimodal character with fast and slow H-fragment peaks similar to the spectra of the bare molecule. However, with increasing cluster size the slow component gains intensity with respect to the fast one. A similar effect is observed with increasing the excitation energy from 243 to 193 nm. Theoretical calculations at the CASSCF/CASPT2 level have been performed for bare and complexed pyrroles (pyrrole is complexed with an argon atom and with another pyrrole unit). Combination of theoretical and experimental approaches leads to the conclusion that the direct dissociative pathway along the pisigma* potential energy surface in the N-H stretch coordinate is closed by the presence of the solvent molecule. This pathway is an important channel leading to the fast H atoms in the dissociation of the bare molecule. The solvent molecule influences significantly the electronic structure in the Rydberg-type pisigma* state while it has little influence on the valence states. The slow channel is mostly populated by the out-of-plane deformation mode which is also not influenced by solvation. We have also studied other possible reaction channels in pyrrole clusters (hydrogen transfer, dimerization). The present study shows that more insight into the bulk behavior of biologically relevant molecules can be gained from cluster studies.  相似文献   
112.
Hyperfine structures arising from the couplings of the nuclear spin angular momentum of (17)O (I = 5/2) with the end over end rotation of several metal-containing diatomic monoxides have been observed using a Fourier transform microwave spectrometer. The molecules have been produced by reacting (17)O(2) with laser ablated metal atoms. The oxygen-17 nuclear quadrupole coupling constants have been determined for the title molecules and are interpreted in terms of a simple Townes-Dailey model. Also, the oxygen-17 nuclear spin-rotation constants have been determined and used to calculate the oxygen-17 shieldings for each molecule.  相似文献   
113.
Bis{(diphenylvinylsilyl)tetramethylcyclopentadienyl}titanium dichloride [TiCl25-C5Me4(SiPh2CH=CH2)}2] (1) is reduced with a half molar equivalent of magnesium to the monochloride ([TiCl{η5-C5Me4(SiPh2CH=CH2)}2] (2), whereas one molar equivalent of magnesium affords the titanocene [Ti{η5-C5Me4(SiPh2CH=CH2)}{η52-C5Me4(SiPh2CH=CH2)}] (3) stabilized by η2-coordination of one of the two vinyl groups to titanium(II). In the presence of excess magnesium, the vinyl moieties of 3 undergo intramolecular coupling to afford the ansa-titanocene [Ti(η552-C5Me4SiPh2CH=CHCH2CH2SiPh2C5Me4)] (4) possessing the η2-coordinated double bond in lateral position of its ansa-chain. The symmetrical ansa-titanocene [Ti(η552-C5Me4SiPh2CH2CH=CHCH2SiPh2C5Me4)] (5) was not obtained although its DFT-calculated energy is only slightly higher than that of 4. It is considered that transient 5 gives rise to non-identified tar-like by-products which inherently accompany the formation of 4.  相似文献   
114.
115.
The first Ni‐catalyzed Suzuki–Miyaura coupling of amides for the synthesis of widely occurring biaryl compounds through N?C amide bond activation is reported. The reaction tolerates a wide range of electron‐withdrawing, electron‐neutral, and electron‐donating substituents on both coupling partners. The reaction constitutes the first example of the Ni‐catalyzed generation of aryl electrophiles from bench‐stable amides with potential applications for a broad range of organometallic reactions.  相似文献   
116.
The first Negishi cross‐coupling of amides for the synthesis of versatile diaryl ketones by selective C?N bond activation under exceedingly mild conditions is reported. The cross‐coupling was accomplished with bench‐stable, inexpensive precatalyst [Ni(PPh3)2Cl2] that shows high functional‐group tolerance and enables the synthesis of highly functionalized diaryl ketone motifs. The coupling occurred with excellent chemoselectivity favoring the ketone (cf. biaryl) products. Notably, this process represents the mildest conditions for amide N?C bond activation accomplished to date (room temperature, <10 min). Considering the versatile role of polyfunctional biaryl ketone linchpins in modern organic synthesis, availability, and excellent functional‐group tolerance of organozinc reagents, this strategy provides a new platform for amide N?C bond/organozinc cross‐coupling under mild conditions.  相似文献   
117.
Samarium(II) iodide enables a wide range of highly chemoselective umpolung radical transformations proceeding by electron transfer to carbonyl groups; however, cyclizations of important nitrogen‐containing precursors have proven limited due to their prohibitive redox potential. Herein, we report the first reductive cyclizations of unactivated cyclic imides onto N‐tethered olefins using SmI2/H2O. This new umpolung protocol leads to the rapid synthesis of nitrogen‐containing heterocycles that are of particular significance as precursors to pharmaceutical pharmacophores and numerous classes of alkaloids. The reaction conditions tolerate a wide range of functional groups. Excellent chemoselectivity is observed in the cyclization over amide and ester functional groups. Such unconventional reactivity has important implications for the design and optimization of new bond‐forming reactions by umpolung radical processes. The reaction advances the SmI2 cyclization platform to the challenging unactivated N‐tethered acyl‐type radical precursors to access nitrogen‐containing architectures.  相似文献   
118.
Herein, we show that acyclic amides that have recently enabled a series of elusive transition‐metal‐catalyzed N?C activation/cross‐coupling reactions are highly twisted around the N?C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N‐glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α‐carbon atom. The 15N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground‐state twist as a blueprint for activation of amides toward N?C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non‐planar amide bonds.  相似文献   
119.
The cyclohexane-1,2-diamine-based bisbinaphthyl macrocycles (S)-/(R)-5 and their cyclic and acyclic analogues are synthesized. The interactions of these compounds with various chiral acids are studied. Compounds (S)-/(R)-5 exhibit highly enantioselective fluorescent responses and high fluorescent sensitivity toward alpha-hydroxycarboxylic acids and N-protected amino acids. Among these interactions, (S)-mandelic acid (10(-3) M) led to over 20-fold fluorescence enhancement of (S)-5 (1.0 x 10(-5) M in benzene/0.05% DME) at the monomer emission, and (S)-hexahydromandelic acid (10(-3) M) led to over 80-fold fluorescence enhancement. These results demonstrate that (S)-5 is useful as an enantioselective fluorescent sensor for the recognition of the chiral acids. On the basis of the study of the structures of (S)-5 and the previously reported 1,2-diphenylethylenediamine-based bisbinaphthyl macrocycle (S)-4, the large fluorescence enhancement of (S)-5 with a chirality-matched alpha-hydroxycarboxylic acid is attributed to the formation of a structurally rigidified host-guest complex and the further interaction of this complex with the acid to suppress the photoinduced electron-transfer fluorescent quenching caused by the nitrogens in (S)-5.  相似文献   
120.
Lipid vesicles can be connected by membrane nanotubes to build networks with promising bioanalytical properties. Here we characterize electrophoretic transport in such membrane tubes, with a particular eye to how their soft-material nature influences the intratube migration. In the absence of field, the tube radius is 110 +/- 26 nm, and it remains in this range during electrophoresis even though the applied electric field causes a slight decrease in the tube radius (approximately 6-11%). The electrophoretic velocity of the membrane wall (labeled with quantum dots) varies linearly with the field strength. Intratube migration is studied with latex spheres of radii 15, 50, 100, and 250 nm. The largest particle size does not enter the tube at fields strengths lower than 1250 V/m because the energy cost for expanding the tube around the particles is too high. The smaller particles migrate with essentially the same velocity as the membrane at low fields. Above 250 V/cm, the 15 nm particles exhibit an upward deviation from linear behavior and in fact migrate faster than in free solution whereas the 100 nm particles deviate downward. We propose that these nonlinear effects arise because of lipid adsorption to the particles (dominating for 15 nm particles) and a pistonlike compression of the solvent in front of the particles (dominating for 100 nm). As expected from such complexities, existing theories for a sphere migrating in a rigid-wall cylinder cannot explain our velocity results in lipid nanotubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号