首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35445篇
  免费   1112篇
  国内免费   267篇
化学   24939篇
晶体学   281篇
力学   730篇
综合类   1篇
数学   6011篇
物理学   4862篇
  2023年   167篇
  2022年   329篇
  2021年   440篇
  2020年   619篇
  2019年   602篇
  2018年   420篇
  2017年   391篇
  2016年   957篇
  2015年   844篇
  2014年   1017篇
  2013年   1728篇
  2012年   2211篇
  2011年   2483篇
  2010年   1343篇
  2009年   1186篇
  2008年   2291篇
  2007年   2111篇
  2006年   2133篇
  2005年   1984篇
  2004年   1701篇
  2003年   1391篇
  2002年   1345篇
  2001年   495篇
  2000年   478篇
  1999年   415篇
  1998年   408篇
  1997年   419篇
  1996年   455篇
  1995年   319篇
  1994年   378篇
  1993年   342篇
  1992年   308篇
  1991年   283篇
  1990年   252篇
  1989年   214篇
  1988年   213篇
  1987年   227篇
  1986年   187篇
  1985年   387篇
  1984年   334篇
  1983年   285篇
  1982年   345篇
  1981年   282篇
  1980年   293篇
  1979年   248篇
  1978年   231篇
  1977年   224篇
  1976年   211篇
  1975年   187篇
  1974年   162篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
102.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
103.
An efficient numerical method is presented for solving the equations of motion for viscous fluids. The equations are discretized on the basis of unstructured finite element meshes and then solved by direct iteration. Advective fluxes are temporarily fixed at each iteration to provide a linearized set of coupled equations which are then also solved by iteration using a fully implicit algebraic multigrid (AMG) scheme. A rapid convergence to machine accuracy is achieved that is almost mesh-independent. The scaling of computing time with mesh size is therefore close to the optimum.  相似文献   
104.
Most of the significant work has been summarized in a number of reviews and articles. In these there was, of necessity, a good deal of simplification and omission of detail…. With the passage of time, even I find myself accepting such simplified accounts. F Sanger[1]  相似文献   
105.
106.
107.
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the spacetime of a straight cosmic string with quasiregular singularity is constructed.  相似文献   
108.
109.
Acoustic parameters were measured for vowels spoken in /hVd/ context by four postlingually deafened recipients of multichannel (Ineraid) cochlear implants. Three of the subjects became totally deaf in adulthood after varying periods of partial hearing loss; the fourth became totally deaf at age four. The subjects received different degrees of perceptual benefit from the prosthesis. Recordings were made before, and at intervals following speech processor activation. The measured parameters included F1, F2, F0, SPL, duration, and amplitude difference between the first two harmonic peaks in the log magnitude spectrum (H 1-H2). Numerous changes in parameter values were observed from pre- to post-implant, with differences among subjects. Many changes, but not all, were in the direction of normative data, and most changes were consistent with hypotheses about relations among the parameters. Some of the changes tended to enhance phonemic contrasts; others had the opposite effect. For three subjects, H 1-H2 changed in a direction consistent with measurements of their average air flow when reading; that relation was more complex for the fourth subject. The results are interpreted with respect to: characteristics of the individual subjects, including vowel identification scores; mechanical interactions among glottal and supraglottal articulations; and hypotheses about the role of auditory feedback in the control of speech production. Almost all the observed differences could be attributed to changes in the average settings of speaking rate, F0 and SPL, which presumably can be perceived without the need for spectral place information. Some observed F2 realignment may be attributable to the reception of spectral cues.  相似文献   
110.
Solution properties for random and diblock copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA) have been measured by dynamic and total intensity light scattering in solvents of differing quality. The results are compared with the corresponding properties for PS and PMMA homopolymers of similar molecular weight, in order to determine if interactions between unlike monomers are significant. The hydrodynamic radius (Rh) and diffusion second virial coefficient (kd) for the random copolymer are found to be larger than the corresponding values for the homopolymers in a solvent which is near-theta for the two homopolymers, whereas no such effect is observed for the block copolymer. This suggests that most intrachain interactions occur a relatively short distance along the chain backbone. In a mutual good solvent Rh and kd of the random copolymer are comparable to the average of the values for the homopolymers, indicating that in a good solvent monomer/solvent interactions dominate over monomer/monomer interactions. For an isolated diblock copolymer in a mutual good solvent, there is no evidence that interactions between unlike monomers lead to additional expansion of the entire molecule, as measured by Rh, nor expansion of the individual blocks as probed by light scattering with one block optically masked. However, at low but finite concentration there is evidence (the coefficients of the binary interaction terms in the viscosity and the mutual diffusion coefficient, and the second and third virial coefficients) that a weak ordering effect may exist in block copolymer solutions, far from the conditions where microphase separation occurs. Finally, measurements of ternary polymer-polymer-solvent solutions show no dependence on monomer composition or monomer distribution for the tracer diffusion of probe PS-PMMA copolymers in a PMMA/toluene matrix. This indicate that the frictional interaction is largely unaffected by interactions between unlike monomers. However, there is evidence that the thermodynamic interaction is more unfavorable between a random copolymer and the homopolymer matrix than between a diblock and the matrix. © 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号