首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252699篇
  免费   3704篇
  国内免费   1584篇
化学   144666篇
晶体学   3483篇
力学   9531篇
综合类   62篇
数学   30152篇
物理学   70093篇
  2020年   2309篇
  2019年   2439篇
  2018年   2860篇
  2017年   2890篇
  2016年   4523篇
  2015年   3199篇
  2014年   4461篇
  2013年   10455篇
  2012年   9659篇
  2011年   11596篇
  2010年   7865篇
  2009年   7540篇
  2008年   10808篇
  2007年   10773篇
  2006年   10240篇
  2005年   9452篇
  2004年   8368篇
  2003年   7300篇
  2002年   7173篇
  2001年   7150篇
  2000年   5515篇
  1999年   4050篇
  1998年   3397篇
  1997年   3391篇
  1996年   3412篇
  1995年   2918篇
  1994年   3046篇
  1993年   2894篇
  1992年   3114篇
  1991年   3146篇
  1990年   2932篇
  1989年   2817篇
  1988年   2755篇
  1987年   2701篇
  1986年   2687篇
  1985年   3645篇
  1984年   3675篇
  1983年   3062篇
  1982年   3353篇
  1981年   3071篇
  1980年   2877篇
  1979年   3014篇
  1978年   3206篇
  1977年   3240篇
  1976年   3258篇
  1975年   2965篇
  1974年   3056篇
  1973年   3070篇
  1972年   2394篇
  1971年   1901篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
A new method was developed for studying voids and channels in crystal structures based on the Voronoi-Dirichlet partition of crystal space, and 822 structurally characterized ternary compounds Li p X q O r were analyzed for the first time. For these compounds, the dimensionality was determined and the migration patterns of channel systems capable of providing lithium-ion transport were constructed. The calculated coordinates of lithium atoms in the centers of the voids are consistent (within 0.4 ?) with the known structural data. Among these compounds, 113 compounds have infinite channel systems, 60 compounds (18 structural types, STs) have been described earlier in the literature as solid electrolytes, and 53 compounds (23 STs) can be considered as potential one-, two-, or three-dimensional ionic conductors (13, 3, and 7 STs, respectively). Original Russian Text ? N.A. Anurova, V.A. Blatov, G.D. Ilyushin, O.A. Blatova, A.K. Ivanov-Shitz, L.N. Dem’yanets, 2008, published in Kristallografiya, 2008, Vol. 53, No. 6, pp. 987–993.  相似文献   
22.
We study parametric oscillations of linear systems with one degree of freedom for large values of the modulation coefficient. We use the classical analytic Lyapunov-Poincaré perturbation methods and an original numerically-analytic method of accelerated convergence to construct periodic solutions and the corresponding eigenvalues. We find the boundaries of stability and instability domains. We use specific models to illustrate the main properties of parametric oscillations of systems with singular character of the perturbation dependence on the modulation coefficient. We consider periodic boundary value problems for the modified Mathieu equation and the Kochin equation modeling crankshaft torsional vibrations and show that there are significant differences between weakly and essentially perturbed periodicmotions both for the lowest and arbitrary oscillation modes. We also describe the unusual properties of the boundaries in the domain of the system determining parameters.  相似文献   
23.
The paper addresses the problem of calculation of the local stress field and effective elastic properties of a unidirectional fiber reinforced composite with anisotropic constituents. For this aim, the representative unit cell approach has been utilized. The micro geometry of the composite is modeled by a periodic structure with a unit cell containing multiple circular fibers. The number of fibers is sufficient to account for the micro structure statistics of composite. A new method based on the multipole expansion technique is developed to obtain the exact series solution for the micro stress field. The method combines the principle of superposition, technique of complex potentials and some new results in the theory of special functions. A proper choice of potentials and new results for their series expansions allow one to reduce the boundary-value problem for the multiple-connected domain to an ordinary, well-posed set of linear algebraic equations. This reduction provides high numerical efficiency of the developed method. Exact expressions for the components of the effective stiffness tensor have been obtained by analytical averaging of the strain and stress fields.  相似文献   
24.
The chlorination of benzene, toluene, and o-xylene with molecular chlorine in the presence of the phthalocyanine complexes of different structures was studied. The transformations of the catalysts during the reaction were investigated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1644–1647, August, 2008.  相似文献   
25.
Thermodynamic parameters of reactions of methyl and phenyl isocyanates with a series of compounds were determined by quantum-chemical calculations. The products of these reactions model for various functional groups present in commercial polyurethanes. The thermodynamic stability series for compounds formed from aliphatic and aromatic isocyanates were constructed.  相似文献   
26.
27.
In the direct simulation Monte‐Carlo (DSMC) method for simulating rarefied gas flows, the velocities of simulator particles that cross a simulation boundary and enter the simulation space are typically generated using the acceptance–rejection procedure that samples the velocities from a truncated theoretical velocity distribution that excludes low and high velocities. This paper analyses an alternative technique, where the velocities of entering particles are obtained by extending the simulation procedures to a region adjacent to the simulation space, and considering the movement of particles generated within that region during the simulation time step. The alternative method may be considered as a form of acceptance–rejection procedure, and permits the generation of all possible velocities, although the population of high velocities is depleted with respect to the theoretical distribution. Nevertheless, this is an improvement over the standard acceptance–rejection method. Previous implementations of the alternative method gave a number flux lower than the theoretical number required. Two methods for obtaining the correct number flux are presented. For upstream boundaries in high‐speed flows, the alternative method is more computationally efficient than the acceptance–rejection method. However, for downstream boundaries, the alternative method is extremely inefficient. The alternative method, with the correct theoretical number flux, should therefore be used in DSMC computations in favour of the acceptance–rejection method for upstream boundaries in high‐speed flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
28.
A preconditioning approach based on the artificial compressibility formulation is extended to solve the governing equations for unsteady turbulent reactive flows with heat release, at low Mach numbers, on an unstructured hybrid grid context. Premixed reactants are considered and a flamelet approach for combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell‐vertex finite volume method is adopted as a discretisation scheme. Artificial dissipation terms for hybrid grids are explicitly added to ensure a stable, discretised set of equations. A second‐order, explicit, hybrid Runge–Kutta scheme is applied for the time marching in pseudo‐time. A time derivative of the dependent variable is added to recover the time accuracy of the preconditioned set of equations. This derivative is discretised by an implicit, second‐order scheme. The resulting scheme is applied to the calculation of an infinite planar (one‐dimensional) turbulent premixed flame propagating freely in reactants whose turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained with the proposed method proves to be excellent when compared to the data available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
29.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
30.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号