首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202196篇
  免费   3449篇
  国内免费   956篇
化学   113760篇
晶体学   2723篇
力学   8257篇
综合类   8篇
数学   23459篇
物理学   58394篇
  2021年   1377篇
  2020年   1662篇
  2019年   1680篇
  2018年   1528篇
  2017年   1531篇
  2016年   3201篇
  2015年   2675篇
  2014年   3402篇
  2013年   9270篇
  2012年   8237篇
  2011年   10143篇
  2010年   6092篇
  2009年   6128篇
  2008年   9345篇
  2007年   9180篇
  2006年   8889篇
  2005年   8288篇
  2004年   7364篇
  2003年   6295篇
  2002年   6143篇
  2001年   6485篇
  2000年   4997篇
  1999年   3855篇
  1998年   2985篇
  1997年   3001篇
  1996年   2975篇
  1995年   2564篇
  1994年   2505篇
  1993年   2328篇
  1992年   2625篇
  1991年   2565篇
  1990年   2249篇
  1989年   2201篇
  1988年   2221篇
  1987年   2165篇
  1986年   2044篇
  1985年   3115篇
  1984年   3061篇
  1983年   2464篇
  1982年   2700篇
  1981年   2517篇
  1980年   2490篇
  1979年   2386篇
  1978年   2455篇
  1977年   2395篇
  1976年   2310篇
  1975年   2281篇
  1974年   2161篇
  1973年   2216篇
  1972年   1276篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
71.
72.
73.
74.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   
75.
The first examples of the catalytic asymmetric 1,3‐dipolar cycloaddition of azomethine ylides with acyclic activated 1,3‐dienes (and 1,3‐enynes) are described. Under copper catalysis, a selective cycloaddition at the terminal γ,δ‐C?C bond is observed. In addition, depending on the ligand used, either the exo or the endo adduct can be obtained with high selectivity. Under appropriate reaction conditions, the acyclic 1,6‐addition product is detected, suggesting a stepwise mechanism. The resulting C4‐alkenyl‐substituted pyrrolidines are suitable substrates for further access to polycyclic systems, as highlighted by the preparation of hexahydrochromeno[4,3‐b]pyrrole and the tetracyclic core of the alkaloid gracilamine.  相似文献   
76.
Tunneled metal oxides such as α-Mn8O16 (hollandite) have proven to be compelling candidates for charge-storage materials in high-density batteries. In particular, the tunnels can support one-dimensional chains of K+ ions (which act as structure-stabilizing dopants) and H2O molecules, as these chains are favored by strong H-bonds and electrostatic interactions. In this work, we examine the role of water molecules in enhancing the stability of K+-doped α-Mn8O16 (cryptomelane). The combined experimental and theoretical analyses show that for high enough concentrations of water and tunnel-ions, H2O displaces K+ ions from their natural binding sites. This displacement becomes energetically favorable due to the formation of K2+ dimers, thereby modifying the stoichiometric charge of the system. These findings have potentially significant technological implications for the consideration of cryptomelane as a Li+/Na+ battery electrode. Our work establishes the functional role of water in altering the energetics and structural properties of cryptomelane, an observation that has frequently been overlooked in previous studies.

Water displaces potassium ions and initiates the formation of a homonuclear dimer ion (K2+) in the tunnels of hollandite.  相似文献   
77.
78.
79.
In this paper, integration of interference phenomenon into femtosecond laser micromachining was reported as the femtosecond laser pulses were reshaped spatially to perform ablation. The generation of circular interference pattern was demonstrated by overlapping infrared femtosecond laser pulses. The interference pattern was subsequently focused on a copper substrate to ablate microstructures of concentric circular rings. The present technique is expected to open up new applications in the areas of rapid fabrication of micro-Fresnel lenses, hybrid microlenses and lens arrays.  相似文献   
80.
In order to describe the dynamics of the tJ model, two different families of first-order Lagrangians in terms of the generators of the Hubbard algebra are found. Such families correspond to different dynamical second-class constrained systems. The quantization is carried out by using the path-integral formalism. In this context the introduction of proper ghost fields is needed to render the model renormalizable. In each case the standard Feynman diagrammatics is obtained and the renormalized physical quantities are computed and analyzed. In the first case a nonperturbative large-N expansion is considered with the purpose of studying the generalized Hubbard model describing N-fold-degenerate correlated bands. In this case the 1/N correction to the renormalized boson propagator is computed. In the second case the perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator coming from our formalism is studied in details. As an example the thermal softening of the magnon frequency is computed. The antiferromagnetic case is also analyzed, and the results are confronted with previous one obtained by means of the spin-polaron theories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号