全文获取类型
收费全文 | 416篇 |
免费 | 8篇 |
专业分类
化学 | 278篇 |
晶体学 | 10篇 |
力学 | 11篇 |
数学 | 32篇 |
物理学 | 93篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 8篇 |
2020年 | 9篇 |
2019年 | 9篇 |
2018年 | 13篇 |
2017年 | 11篇 |
2016年 | 10篇 |
2015年 | 6篇 |
2014年 | 17篇 |
2013年 | 25篇 |
2012年 | 26篇 |
2011年 | 33篇 |
2010年 | 26篇 |
2009年 | 23篇 |
2008年 | 31篇 |
2007年 | 25篇 |
2006年 | 27篇 |
2005年 | 21篇 |
2004年 | 13篇 |
2003年 | 14篇 |
2002年 | 5篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 4篇 |
1987年 | 6篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1981年 | 2篇 |
1980年 | 7篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有424条查询结果,搜索用时 15 毫秒
421.
The minimum energy reaction paths and secondary kinetic isotope effects (KIE) for the Cope rearrangements of cis-1,2-divinylcyclobutane and cis-1,2-divinylcyclopropane obtained by (U)B3LYP calculations are reported. Both reactions proceed through endo-boatlike reaction paths, and have aromatic transition states. The predicted activation energies are in agreement with the experimental data. The reaction paths of the rearrangements are intervened by enantiomerization saddle points of the products (and the reactant in the case of divinylcyclobutane). The calculated KIEs are similar in the two systems, and consistent with the geometries of the transition structures. There is computational evidence that the isotope effect associated with the conversion of a pure sp(2) C-H bond into a pure sp(3) one might be the same in all molecules. The predicted KIEs agree with experiment for divinylcyclopropane, but not for divinylcyclobutane. 相似文献
422.
A concise and efficient synthesis of densely substituted novel pyrazoles with alkynyl, aryl and ferrocenyl functionalities is reported, providing a platform for biological studies. The general strategy involves Sonogashira and Suzuki–Miyaura cross‐coupling reactions of easily obtainable 5‐ferrocenyl/phenyl‐4‐iodo‐1‐phenylpyrazoles with terminal alkynes and boronic acids, respectively. The starting 4‐iodopyrazoles were synthesized by electrophilic cyclization of α,β‐alkynic hydrazones with molecular iodine. Sonogashira reactions have been achieved by employing 5 mol% PdCl2(PPh3)2, 5 mol% CuI, excess Et3N and 1.2 equiv. of terminal alkyne, relative to 4‐iodopyrazole, in tetrahydrofuran at 65 °C, while Suzuki–Miyaura reactions have been accomplished using 5 mol% PdCl2(PPh3)2 and 1.4 equiv. of both boronic acid/ester and KHCO3, with respect to 4‐iodopyrazole, in 4:1 dimethylformamide–H2O solution at 110 °C. Both Sonogashira and Suzuki–Miyaura coupling reactions have proven effective for the synthesis of alkynyl‐, aryl‐ and ferrocenyl‐substituted pyrazoles and demonstrated good tolerance to a diverse range of substituents, including electron‐donating and electron‐withdrawing groups. These coupling approaches could allow for the rapid construction of a library of functionalized pyrazoles of pharmacological interest. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
423.
An efficient and general method for the synthesis of spiro-1,4-oxazepines and 3,3-dimethyl-1,4-oxazepines is reported. When treated with ZnI2 and AgSbF6 in refluxing DCE, cyclohexane-embedded N-propargylic β-enaminones underwent 7-exo-dig cyclization to afford spiro-1,4-oxazepines, specifically 12-methylene-11-oxa-7-azaspiro[5.6]dodeca-7,9-dienes, in good to high yields. Accordingly, N-(1,1-dimethyl)propargylic β-enaminones produced 3,3-dimethyl-1,4-oxazepines. Cyclization was found to be general for a diverse range of N-propargylic β-enaminones with high efficiency and broad functional group tolerance. This operationally easy method might provide quick access to a library of functionalized spiro and gem-dimethyl-substituted 1,4-oxazepine derivatives of pharmacological interest. 相似文献
424.
A general and convenient route for the synthesis of 2,5-di[1-methyl-1-arylcyclobutane-3-yl]- thiophenes 4a–c and bis[1-methyl-1-arylcyclobutane-3-yl]-2-(2-oxyethtylamido)thiazole sulfides 7a–c is reported. The characterization of these compounds was obtained by elemental analyses, IR, 13C, and 1H NMR techniques. © 2003 Wiley Periodicals, Inc. 15:26–31, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/.hc10207 相似文献