首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   9篇
化学   271篇
晶体学   10篇
力学   12篇
数学   35篇
物理学   111篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   10篇
  2019年   8篇
  2018年   15篇
  2017年   11篇
  2016年   12篇
  2015年   6篇
  2014年   15篇
  2013年   27篇
  2012年   25篇
  2011年   36篇
  2010年   25篇
  2009年   23篇
  2008年   30篇
  2007年   25篇
  2006年   23篇
  2005年   21篇
  2004年   13篇
  2003年   16篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1987年   7篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1981年   2篇
  1980年   7篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
排序方式: 共有439条查询结果,搜索用时 62 毫秒
71.
Transparent conductors (TCs) are materials, which are characterized by high transmission of light and simultaneously very high electrical DC conductivity. These materials play a crucial role, and made possible numerous applications in the fields of electro-optics, plasmonics, biosensing, medicine, and “green energy”. Modern applications, for example in the field of touchscreen and flexible displays, require that TCs are also mechanically strong and flexible. TC can be broadly classified into two categories: uniform and non-uniform TC. The uniform TC can be viewed as conventional metals (or electron plasmas) with plasma frequency located in the infrared frequency range (e.g. transparent conducting oxides), or ultra-thin metals with large plasma frequency (e.g. graphen). The physics of the nonuniform TC is much more complex, and could involve transmission enhancement due to refraction (including plasmonic), and exotic effects of electron transport, including percolation and fractal effects. This review ties the TC performance to the underlying physical phenomena. We begin with the theoretical basis for studying the various phenomena encountered in TC. Next, we consider the uniform TC, and discuss first the conventional conducting oxides (such as indium tin oxide), reviewing advantages and limitations of these classic uniform electron plasmas. Next, we discuss the potential of single- and multiple-layer graphene as uniform TC. In the part of the paper dealing with non-uniform metallic films, we begin with the review of random metallic networks. The transparency of these networks could be enhanced beyond the classical shading limit by the plasmonic refractive effects. The electrical conduction strongly depends on the network type, and we review first networks made of individual metallic nanowires, where conductivity depends on the inter-wire contact, and the percolation effects. Next, we review the uniform metallic film networks, which are free of the percolation effects and contact problems. In applications that require high-quality electric contact of a TC to an active substrate (such as LED or solar cells), the network performance can be optimized by employing a quasi-fractal structure of the network. We also consider the periodic metallic networks, where active plasmonic refraction leads to the phenomenon of the extraordinary optical transmission. We review the relevant literature on this topic, and demonstrate networks, which take advantage of this strategy (the bio-inspired leaf venation (LV) network, hybrid networks, etc.). Finally, we review “smart” TCs, with an added functionality, such as light interference, metamaterial effects, built-in semiconductors, and their junctions.  相似文献   
72.
A novel 1,3,4-oxadiazole-substituted benzo[b]triphenylene was synthesized by three-step synthetic procedure and OFET device design was successfully designed after theoretical calculations made using Gaussian software. For investigating the field-effect properties of designed organic electronic device, a SiO2 (300 nm) was thermally grown on p-Si wafer at 1000 °C as a dielectric layer and gate, source and drain contacts have been deposited using Au metal with physical vapour deposition. 1,3,4-Oxadiazole-substituted benzo[b]triphenylene was spin coated on the source and drain electrodes of our device, forming organic/inorganic interfaced field-effect transistors. Surface morphology and thin film properties were investigated using AFM. All electrical measurements were done in air ambient. The device showed a typical p-type channel behaviour with increasing negative gate bias voltage values. Our results have surprisingly shown that the saturation regime of this device has high mobility (μFET), excellent on/off ratio (Ion/Ioff), high transconductance (gm) and a small threshold voltage (VTh). The values of μFET, Ion/Ioff, gm and VTh were found as 5.02 cm2/Vs, 0.7 × 103, 5.64 μS/mm and 1.37 V, respectively. These values show that our novel organic material could be a potential candidate for organic electronic device applications in the future.  相似文献   
73.
74.
This paper proposes an approximate adhesion model for fibrillar adhesives for developing a fibrillar adhesive design methodology and compares numerical simulation adhesion results with macroscale adhesion data from polymer microfiber array experiments. A technique for fabricating microfibers with a controlled angle is described for the first time. Polyurethane microfibers with different hardnesses, angles, and aspect ratios are fabricated using optical lithography and polymer micromolding techniques and tested with a custom tensile adhesion measurement setup. Macroscale adhesion and overall work of adhesion of the microfiber arrays are measured and compared with the models to observe the effect of fiber geometry and preload. The adhesion strength and work of adhesion behavior of short and long vertical and long angled fiber arrays have similar trends with the numerical simulations. A scheme is also proposed to aid in optimized fiber adhesive design.  相似文献   
75.
An improved approach is presented for the hybrid Eulerian‐Lagrangian modeling of turbulent two‐phase flows. The hybrid model consists of a nonlinear k–ε model for the fluid flow and an efficient Lagrangian trajectory model for the particulate flow. The improved approach avoids an empirical correlation required to determine the dispersion width for the existing Stochastic‐Probabilistic Efficiency Enhanced Dispersion (SPEED) model. The improved SPEED model is validated using experimental data for a poly‐dispersed water spray interacting with a turbulent annular air jet behind a bluff‐body. Numerical results for the number‐mean and Sauter‐mean droplet diameters, as well as mean and fluctuating droplet velocities are compared with the experimental data and with the predictions of other dispersion models. It is demonstrated that higher computational efficiency and smoother profiles of Sauter‐mean diameter can be obtained with the improved stochastic‐probabilistic model than with the eddy‐interaction model.  相似文献   
76.
77.
Peripancreatic fluid collections are among the common post pancreas transplant complications, which are mainly due to leakage from the anastomosis site to bowel and graft pancreatitis. Differentiation between these two entities is important because they are treated differently.In this case, secretin stimulated magnetic resonance cholangiopancreatography revealed gradual intraperitoneal fluid collection and accumulation of fluid in small bowel excluded leakage from the anastomosis of the pancreas to bowel and changed the management from surgery to medical treatment.  相似文献   
78.
The crystal structure of the title compound, C2H10N2O2+·2Cl, is built up from one 2‐hydroxy­ethyl­hydrazinium(2+) cation and two Cl anions. The mol­ecular structure is stabilized by O—H⋯Cl and N—H⋯Cl hydrogen bonds. The crystal structure is stabilized by one N—H⋯O and three N—H⋯Cl inter­actions, and the three‐dimensional network of hydrogen bonds stabilizes the crystal packing. All five hydrazinium H atoms are involved in hydrogen bonds to Cl anions. The Cl⋯H contact distances range from 2.122 (15) to 2.809 (14) Å.  相似文献   
79.
The effect of molecular mass on the segmental dynamics of poly(methyl acrylate) (PMA) adsorbed on silica was studied using deuterium quadrupole-echo nuclear magnetic resonance (NMR) and modulated differential scanning calorimetry. Samples adsorbed on silica (all about 1.5 mg PMA/m2 silica) were shown to have more restricted segmental mobility, and higher Tg's, than the corresponding bulk PMA samples. Around the glass-transition region, adsorbed samples exhibited segmental mobility, which could be classified as heterogeneous due to a superposition of more-mobile and less-mobile components present in the deuterium NMR spectra. This heterogeneity was consistent with a motional gradient with more-mobile segments near the polymer-air interface and the less-mobile species near the polymer-silica interface. The mobility of the adsorbed 77 kDa PMA sample was the lowest among the four different molecular-mass samples studied. Samples studied with masses both larger and smaller than 77 kDa had larger mobile-component fractions in the adsorbed polymer. The additional mobility was attributed to the presence of either longer tail and loop conformations in the higher molecular-mass samples or the inherent mobility of the tails in the lower molecular-mass samples on the surface.  相似文献   
80.
This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height \(H_{\mathrm{w}}\) and cone half-angle \(\beta \) vary, numerous flow metamorphoses occur. They are investigated for \(\beta =30^{\circ }, 45^{\circ }\), and \(60^{\circ }\). For small \(H_{\mathrm{w}}\), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as \(H_{\mathrm{w}}\) exceeds a threshold depending on \(\beta \). For all \(\beta \), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号