首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   6篇
化学   62篇
晶体学   1篇
  2021年   1篇
  2020年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1989年   2篇
  1988年   7篇
  1986年   2篇
  1984年   2篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
21.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   
22.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   
23.
The diorganomercurial bis[2-(N,N-dimethylaminomethyl)ferrocenyl]mercury(II), (FcN)2Hg (3), can be obtained by the symmetrisation of the heteroleptic (FcN)HgCl (2) with Na2S2O3 or in the transmetallation reaction of 2 with (FcN)Li. By crystallisation only the crystals of rac-(FcN)2Hg were obtained. X-ray diffraction analysis revealed linear coordinated mercury atom with two η1-bonded FcN ligands. Additionally, weak chelate interactions exist between mercury and nitrogen atoms of the ---CH2NMe2 side chains. According to the 1H-NMR findings, these interactions are not preserved in solution. Diorganomercurial 3 appears in solution as a mixture of two diastereomers with rac/meso-(FcN)2Hg ratio of 1:1. This diastereomeric ratio in solution remains constant within a wide temperature range and in different solvents. The NMR spectroscopic data of the heteroleptic organomercurials [(FcN)HgCl]2·H2O (1) and (FcN)HgCl (2) indicate the chelate-free structure of this compounds in solution within the studied temperature interval (−80 to 90 °C).  相似文献   
24.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   
25.
R*OCH2CH2CH2SO2Ph (R*OH = MenOH, (–)‐menthol, ( 3a ); BorOH, (1S)‐(–)‐borneol, ( 3b )) were found to react with n‐BuLi in n‐pentane/n‐hexane and toluene/n‐hexane under deprotonation yielding LiCH(CH2CH2OR*)SO2Ph (R* = Men, ( 4a ); Bor, ( 4b )) which reacted with n‐Bu3SnCl forming the requisite tri(n‐butyl)tin compounds n‐Bu3SnCH(CH2CH2OR*)SO2Ph (R* = Men, ( 5a ); Bor, ( 5b )) as diastereomeric mixtures. The identities of 5a and 5b were unambiguously proved by 1H, 13C and 119Sn NMR spectroscopic measurements. Solutions of 4a afforded crystals of [{LiCH(CH2CH2OMen)SO2Ph}4] ( 4a′ ) for which the structure was determined by single‐crystal X‐ray crystallography. Complex 4a′ crystallized in a tetrameric structure without any additional solvent molecules. There were found direct Li–C bonds (Li1–C1/Li2–C20 2.231(9)/2.236(9) Å). The tetrahedral donor set of Li is completed by three oxygen atoms. One oxygen atom comes from the OMen substituent via intramolecular coordination and two oxygen atoms come from SO2 groups of neighboured LiCH(CH2CH2OMen)SO2Ph moieties. Thus, a heterocubane structure with a Li4S4 core is built up.  相似文献   
26.
[{Cp*(CO)2Fe}6Sn6O8]2+, a Cationic Tin Oxo Cluster with Organometallic Substituents The reaction of [{Cp*(CO)2Fe}SnCl3] 1 (Cp* = Pentamethylcyclopentadienyl) with Ag2O in acetone leads to the formation of [{Cp*(CO)2Fe}6Sn6O8][AgCl2]2( 2 ). 2 contains the novel tin oxo cluster cation [{Cp*(CO)2Fe}6Sn6O8]2+ which consists of six {Cp*(CO)2Fe}Sn‐groups bridged by eight μ3 oxygen atoms (Sn—O = 209.2(3)‐212.5(3) pm). The resulting Sn6O8 cage exhibits a distorted rhombodocahedral structure. The [AgCl2] anion is essentially linear with a Ag—Cl bond length of 250.3(3) pm.  相似文献   
27.
Treatment of R2SiCl2 (R = Me, Ph) with 2‐aminopyridine in the presence of NEt3 led to the formation of the bis(N‐2‐pyridylamino)silanes R2Si{NH(2‐Py)}2, which were isolated as pale yellow solids. Crystal structure analyses revealed that both compounds exhibit tetrahedrally coordinated silicon atoms which are linked to two 2‐pyridylamido moieties and two organyl groups (Me or Ph). As a result of intermolecular hydrogen bonding between the NH groups and the pyridyl N atoms the R2Si{NH(2‐Py)}2 molecules are catenated in the solid state. Treatment of R2Si{NH(2‐Py)}2 with nBuLi afforded the corresponding amides R2Si{NLi(2‐Py)}2, which were subsequently reacted with MCl2 (M = Sn, Pb) to give the dinuclear silylamides [{R2Si(N‐2‐Py)2M}2]. Both the tin and the lead derivatives exhibit closely related molecular structures, in which the tin (or lead) atoms are linked to two amido N atoms and a pyridyl N atom in a distorted trigonal bipyramidal coordination mode.  相似文献   
28.
The reaction of ECl3 (E = Al, Ga) with two equivalentsof Li2Me2Si(NPh)2 (in diethyl ether/n‐hexane) leads to the formation of bis‐chelate complexes [Li(OEt2)3][E{Me2Si(NPh)2}2] (E = Al ( 1 ), Ga ( 2 )). Compounds 1 and 2 crystallize isotypically in the monoclinic system with a = 1136.42(6), b = 3267.9(1), c = 1360.37(8) pm, β = 94.320(7)° for 1 and a = 1140.88(6), b = 3261.7(2), c = 1360.20(8) pm, β = 94.641(7)° for 2 . Both the compounds display a distorted tetrahedral coordination of the central metal atom to give a spirocyclic EN4Si2 core. The Al–N bond lengths are in the range of186.5–186.9 pm and for the Ga–N distances values between 192.3and 193.1 pm are observed. Treatment of InCl3 with three equivalents of Li2Me2Si(NPh)2 yields the tris‐chelate [{Li(OEt2)}3In{Me2Si(NPh2)}3] 3 . Compound 3 crystallizes in the trigonal crystal system , space group R$\bar{3}$ c with a = 1852.4(1), and c = 3300.2(2) pm. The central indium atom is coordinated by threeMe2Si(NPh)22– ligands in a distorted octahedral arrangement withIn–N bond lengths of 230.8 pm.  相似文献   
29.
30.
In both physics and chemistry, increased attention is being paid to metal clusters. One reason for this attitude is furnished by the surprising results that have been obtained from studies of the preparation, structural characterization and physical and chemical properties of the clusters. Whereas investigations of cluster reactivity are at present generally limited to three- or four-membered clusters, successful syntheses of clusters with many more metal atoms have recently been designed. These substances occupy an intermediate position between solid state chemistry and the chemistry of metal complexes. This review presents a versatile method for synthesizing metal clusters: the reaction of complexes of transition metal halides with silylated compounds such as E(SiMe3)2 (E = S, Se, Te) and E′R(SiMe3)2 (R = Ph, Me, Et; E′ = P, As, Sb). Although some of the compounds thus formed have already been prepared by other routes, the method affords ready access to both small and large transition metal clusters with unusual structures and valence electron concentrations; a variety of reactions in the ligand sphere are also possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号