首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   761篇
  免费   43篇
  国内免费   3篇
化学   718篇
力学   3篇
数学   46篇
物理学   40篇
  2023年   5篇
  2022年   8篇
  2021年   10篇
  2020年   19篇
  2019年   14篇
  2018年   8篇
  2017年   6篇
  2016年   16篇
  2015年   27篇
  2014年   23篇
  2013年   31篇
  2012年   47篇
  2011年   62篇
  2010年   42篇
  2009年   21篇
  2008年   44篇
  2007年   69篇
  2006年   64篇
  2005年   60篇
  2004年   52篇
  2003年   45篇
  2002年   38篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   7篇
  1997年   5篇
  1996年   9篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   10篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有807条查询结果,搜索用时 31 毫秒
41.
[reaction: see text] Racemic oxodiester 1 undergoes stereoselective cyclocondensation with (S)-tryptophanol, (S)-(3,4-dimethoxyphenyl)alaninol, or the corresponding amino acids, in a process involving a tandem dynamic kinetic resolution/desymmetrization of diastereotopic groups, to give bicyclic lactams, which are cyclized to substituted indolo[2,3-a]- and benzo[a]quinolizidines.  相似文献   
42.
In this paper, we report the enantioselective formation of a dynamic noncovalent double rosette assembly 1a(3).(CYA)(6) composed of three 2-pyridylcalix[4]arene dimelamines (1a) and six butylcyanuric acid molecules (BuCYA). The six 2-pyridyl functionalities of the assembly interact stereoselectively with chiral dicarboxylic acids 3a-e via two-point hydrogen-bonding interactions. One of the two enantiomeric assemblies (P- or M-) 1a(3).(CYA)(6) is formed in excess as the result of the complexation of the chiral diacids, resulting in formation of optically active assemblies. The complexations with dibenzoly tartaric acids D-3a and L-3a (3 equivalent), respectively, leading to the formation of diastereomeric assemblies (P)-1a(3).(BuCYA)(6).(D-3a)(3) and (M)-1a(3).(BuCYA)(6).(L-3a)(3) with 90% diastereomeric excess. The diastereomeric excess in (M)-1a(3).(BuCYA)(6).(L-3a)(3) is "memorized" when L-3a is removed by precipitation with ethlylenediamine (EDA). The assembly (M)-1a(3).(BuCYA)(6) is still optically active (90% enantiomeric excess), although none of its individual components are chiral. (M)-1a(3).(BuCYA)(6) has a high kinetic stability toward racemization (E(a) = 119 kJ mol(-)(1), half-life of (M)-1a(3).(BuCYA)(6) is ca. 1 week at 20 degrees C).  相似文献   
43.
The production of chemicals and fuels, or energy-rich compounds, from water by sunlight is described as a particularly attractive means for the conversion of solar energy to a valuable renewable resource. The redox properties of photoexcited molecules and the operating mechanism of light-driven systems are first considered. The mechanism of water oxidation carried out by higher plants and green algae-which is actually one of the most important biochemical reactions—as well as that of artificial photosystems, up-to-now designed trying to simulate the natural process with higher efficiency and simplicity, are likewise discussed. A number of biological and chemical light-driven systems are presented as practical ways to solar energy conversion.  相似文献   
44.
Two new (η3‐allyl)palladium complexes containing the ligand 3,5‐dimethyl‐4‐nitro‐1H‐pyrazole (Hdmnpz) were synthesized and characterized as [Pd(η3‐C3H5)(Hdmnpz)2]BF4 ( 1 ) and [Pd(η3‐C3H5)(Hdmnpz)2]NO3 ( 2 ). The structures of these compounds were determined by single‐crystal X‐ray diffraction to evaluate the intermolecular assembly. Each complex exhibits similar coordination behavior consistent with cationic entities comprised of two pyrazole ligands coordinated with the [Pd(η3‐C3H5)]+ fragment in an almost square‐planar coordination geometry. In 1 , the cationic entities are propagated through strong intermolecular H‐bonds formed between the pyrazole NH groups and BF ions in one‐dimensional polymer chains along the a axis. These chains are extended into two‐dimensional sheet networks via bifurcated H‐bonds. New intermolecular interactions established between NO2 and Me substituents at the pyrazole ligand of neighboring sheets give rise to a three‐dimensional network. By contrast, compound 2 presents molecular cyclic dimers formed through N? H???O H‐bonds between two NO counterions and the pyrazole NH groups of two cationic entities. The dimers are also connected to each other through C? H???O H‐bonds between the remaining O‐atom of each NO ion and the allyl CH2 H‐atom. Those interactions expand in a layer which lies parallel to the face (101).  相似文献   
45.
By embedding single wall carbon nanotubes in a mesoporous silica matrix (SWNT@SiO2) the photochemical properties have been measured upon laser excitation at 266 nm; the SWNT@SiO2 exhibits long-lived emission (lambda em = 400 nm, tau = 0.95 microsecond), transient absorption (lambda max = 390 nm, tau = 11 microseconds) and is able to generate singlet oxygen in D2O.  相似文献   
46.
47.
A new siderophore containing a 4,5-dihydroimidazole moiety was isolated from Pseudoalteromonas piscicida S2040 together with myxochelins A and B, alteramide A and its cycloaddition product, and bromo- and dibromoalterochromides. The structure of pseudochelin A was established by spectroscopic techniques including 2D NMR and MS/MS fragmentation data. In bioassays selected fractions of the crude extract of S2040 inhibited the opportunistic pathogen Pseudomonas aeruginosa. Pseudochelin A displayed siderophore activity in the chrome azurol S assay at concentrations higher than 50 μM, and showed weak activity against the fungus Aspergillus fumigatus, but did not display antibacterial, anti-inflammatory or anticonvulsant activity.  相似文献   
48.
The synthesis of enantiopure ABCE and ABCD tetracyclic advanced intermediates en route to madangamine alkaloids and studies for the construction of the triunsaturated 15-membered D ring of madangamine B and the saturated 13-membered D ring of madangamine E are reported.  相似文献   
49.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号