首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1257篇
  免费   54篇
  国内免费   11篇
化学   1077篇
晶体学   2篇
力学   22篇
数学   111篇
物理学   110篇
  2023年   8篇
  2022年   24篇
  2021年   26篇
  2020年   47篇
  2019年   34篇
  2018年   20篇
  2017年   14篇
  2016年   36篇
  2015年   31篇
  2014年   34篇
  2013年   49篇
  2012年   94篇
  2011年   102篇
  2010年   72篇
  2009年   45篇
  2008年   81篇
  2007年   105篇
  2006年   102篇
  2005年   77篇
  2004年   61篇
  2003年   54篇
  2002年   46篇
  2001年   17篇
  2000年   16篇
  1999年   8篇
  1998年   12篇
  1997年   5篇
  1996年   14篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   10篇
  1990年   13篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1962年   1篇
排序方式: 共有1322条查询结果,搜索用时 0 毫秒
31.
In this paper, we report the enantioselective formation of a dynamic noncovalent double rosette assembly 1a(3).(CYA)(6) composed of three 2-pyridylcalix[4]arene dimelamines (1a) and six butylcyanuric acid molecules (BuCYA). The six 2-pyridyl functionalities of the assembly interact stereoselectively with chiral dicarboxylic acids 3a-e via two-point hydrogen-bonding interactions. One of the two enantiomeric assemblies (P- or M-) 1a(3).(CYA)(6) is formed in excess as the result of the complexation of the chiral diacids, resulting in formation of optically active assemblies. The complexations with dibenzoly tartaric acids D-3a and L-3a (3 equivalent), respectively, leading to the formation of diastereomeric assemblies (P)-1a(3).(BuCYA)(6).(D-3a)(3) and (M)-1a(3).(BuCYA)(6).(L-3a)(3) with 90% diastereomeric excess. The diastereomeric excess in (M)-1a(3).(BuCYA)(6).(L-3a)(3) is "memorized" when L-3a is removed by precipitation with ethlylenediamine (EDA). The assembly (M)-1a(3).(BuCYA)(6) is still optically active (90% enantiomeric excess), although none of its individual components are chiral. (M)-1a(3).(BuCYA)(6) has a high kinetic stability toward racemization (E(a) = 119 kJ mol(-)(1), half-life of (M)-1a(3).(BuCYA)(6) is ca. 1 week at 20 degrees C).  相似文献   
32.
The production of chemicals and fuels, or energy-rich compounds, from water by sunlight is described as a particularly attractive means for the conversion of solar energy to a valuable renewable resource. The redox properties of photoexcited molecules and the operating mechanism of light-driven systems are first considered. The mechanism of water oxidation carried out by higher plants and green algae-which is actually one of the most important biochemical reactions—as well as that of artificial photosystems, up-to-now designed trying to simulate the natural process with higher efficiency and simplicity, are likewise discussed. A number of biological and chemical light-driven systems are presented as practical ways to solar energy conversion.  相似文献   
33.
Two new (η3‐allyl)palladium complexes containing the ligand 3,5‐dimethyl‐4‐nitro‐1H‐pyrazole (Hdmnpz) were synthesized and characterized as [Pd(η3‐C3H5)(Hdmnpz)2]BF4 ( 1 ) and [Pd(η3‐C3H5)(Hdmnpz)2]NO3 ( 2 ). The structures of these compounds were determined by single‐crystal X‐ray diffraction to evaluate the intermolecular assembly. Each complex exhibits similar coordination behavior consistent with cationic entities comprised of two pyrazole ligands coordinated with the [Pd(η3‐C3H5)]+ fragment in an almost square‐planar coordination geometry. In 1 , the cationic entities are propagated through strong intermolecular H‐bonds formed between the pyrazole NH groups and BF ions in one‐dimensional polymer chains along the a axis. These chains are extended into two‐dimensional sheet networks via bifurcated H‐bonds. New intermolecular interactions established between NO2 and Me substituents at the pyrazole ligand of neighboring sheets give rise to a three‐dimensional network. By contrast, compound 2 presents molecular cyclic dimers formed through N? H???O H‐bonds between two NO counterions and the pyrazole NH groups of two cationic entities. The dimers are also connected to each other through C? H???O H‐bonds between the remaining O‐atom of each NO ion and the allyl CH2 H‐atom. Those interactions expand in a layer which lies parallel to the face (101).  相似文献   
34.
Current needs in finding new antibiotics against emerging multidrug-resistant superbugs are pushing the scientific community into coming back to Nature for the discovery of novel active structures. Recently, a survey of halophilic actinomyectes from saline substrates of El Saladar del Margen, in the Cúllar-Baza depression (Granada, Spain), led us to the isolation and identification of 108 strains from the rhizosphere of the endemic plant Limonium majus. Evaluation of the potential of these strains to produce new anti-infective agents against superbug pathogens was performed through fermentation in 10 different culture media using an OSMAC approach and assessment of the antibacterial and antifungal properties of their acetone extracts. The study allowed the isolation of two novel antibiotic compounds, kribbellichelin A (1) and B (2), along with the known metabolites sandramycin (3), coproporphyrin III (4), and kribelloside C (5) from a bioassay-guided fractionation of scaled-up active extracts of the Kribbella sp. CA-293567 strain. The structures of the new molecules were elucidated by ESI-qTOF-MS/MS, 1D and 2D NMR, and Marfey’s analysis for the determination of the absolute configuration of their amino acid residues. Compounds 1–3 and 5 were assayed against a panel of relevant antibiotic-resistant pathogenic strains and evaluated for cytotoxicity versus the human hepatoma cell line HepG2 (ATCC HB-8065). Kribbellichelins A (1) and B (2) showed antimicrobial activity versus Candida albicans ATCC-64124, weak potency against Acinetobacter baumannii MB-5973 and Pseudomonas aeruginosa MB-5919, and an atypical dose-dependent concentration profile against Aspergillus fumigatus ATCC-46645. Sandramycin (3) confirmed previously reported excellent growth inhibition activity against MRSA MB-5393 but also presented clear antifungal activity against C. albicans ATCC-64124 and A. fumigatus ATCC-46645 associated with lower cytotoxicity observed in HepG2, whereas Kribelloside C (5) displayed high antifungal activity only against A. fumigatus ATCC-46645. Herein, we describe the processes followed for the isolation, structure elucidation, and potency evaluation of these two new active compounds against a panel of human pathogens as well as, for the first time, the characterization of the antifungal activities of sandramycin (3).  相似文献   
35.
36.
When the [Ru(p-cymene)(μ-Cl)Cl]2 complex is made to react, in dichloromethane, with the following ligands: 2-aminobenzonitrile (2abn), 4-aminobenzonitrile (4abn), 2-aminopyridine (2ampy) and 4-aminopyridine (4ampy), after addition of hexane, the following compounds are obtained: [Ru(p-cymene)Cl2(2abn)] (I), [Ru(p-cymene)Cl2(4abn)] (II), [Ru(p-cymene)Cl2(2ampy] (III) and [Ru(p-cymene)Cl2(μ-(4ampy)] (IV). All the compounds are characterized by elemental analysis of carbon, hydrogen and nitrogen, proton nuclear magnetic resonance, COSY 1H-1H, high-resolution mass spectrometry (ESI), thermogravimetry and single-crystal X-ray diffraction (the crystal structure of III is reported and compared with the closely related literature of II). The cytotoxicity effects of complexes were described for cervical cancer HeLa cells via 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay. The results demonstrate a low in vitro anticancer potential of the complexes.  相似文献   
37.
Chemical reactions in charged nanopores, such as present in cellulose fibers, can be accelerated by adding an inert salt, that does not participate in the reaction. Due to a Donnan-like equilibrium between ions inside and outside the pores, the concentration of co-ions in the nanopores (having a charge of the same sign as that of the pore wall), is lower than the concentration in the bulk. The co-ion concentration in pores can be increased by adding an inert salt, which shifts the Donnan equilibrium. The increased concentration of reactants in pores results in faster reaction kinetics. Reactions of cellulose with periodate confirm these predictions.  相似文献   
38.
Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.  相似文献   
39.
The reactions of the title compounds with phenoxides, secondary alicyclic (SA) amines, and pyridines, in 44 wt% ethanol–water, at 25°C and an ionic strength of 0.2 M, were subjected to kinetic and product studies. From analytical techniques (HPLC and NMR), two pathways were detected (nucleophilic attack at the phosphoryl center and at the C‐1 aromatic carbon) for the reactions of all the nucleophiles with the phosphate ( 2 ) and for the pyridinolysis of the thionophosphate ( 1 ). Only aromatic nucleophilic substitution was found for the reactions of 1 with phenoxides and SA amines. For the dual reactions, the nucleophilic rate constants (kN) were separated in two terms: $k_{\rm N}^{\rm P}$ and $k_{\rm N}^{{\rm Ar}}$, which are the rate constants for the corresponding electrophilic centers. The absence of a break in the Brønsted‐type plots for the attack at P is consistent with concerted mechanisms. The Brønsted slopes, βAr 0.32–0.71, for the attack at the aromatic C‐1, are in agreement with stepwise mechanisms where formation of a Meisenheimer complex is the rate‐determining step. © 2013 Wiley Periodicals, Inc. Int J Chem Kinet 45: 202–211, 2013  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号