首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   4篇
物理学   11篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
排序方式: 共有15条查询结果,搜索用时 156 毫秒
11.
This paper reports accurate line positions, intensities, self-broadening, -shift and -line mixing coefficients for 56 rotational transitions from multispectrum fits of low noise, high-resolution Fourier-transform spectra. The measured line intensities are within the statistical spread of the previous measurements available in the literature—thus contributing to the efforts to measure the oxygen A-band intensities with an accuracy better than 1%. We determined the integrated band strength and Einstein A coefficient. Using our spectrum calibration method we could clearly show for the first time that there is a meaningful statistical discrepancy in the frequency standards used in spectroscopic studies for the oxygen A-band. We were able to explain how this discrepancy leads to two different sets of shifts reported in the literature and demonstrate the need for precise frequency-type transition wavenumber measurements of the oxygen A-band transitions. We observed deviations from the conventional Voigt profile due to speed-dependent broadening and line mixing effects. Dicke narrowing was observed on a selected group of spectra recorded at pressures between 98 and 337 Torr. The Dicke narrowed lineshapes were best modeled using a Galatry profile implemented using a fixed value for the velocity-changing collision rate. The weak line mixing coefficients were determined from fits using the speed-dependent models. Exponential Power Gap (EPG) and Energy Corrected Sudden (ECS) scaling laws were used to calculate the self-broadening and self-line mixing coefficients.  相似文献   
12.
A new hot band spectrum of ethylene has been recorded from 2970 to 3015 cm−1at low rotational temperatures in a seeded molecular jet, using vibrational energy transfer from SF6to C2H4. An IR–IR double resonance technique has been applied to pump the lower states and subsequently probe the hot bands. Two new hot bands, ν10+ ν11− ν10and ν7+ ν11− ν7, have been found. The weak hot band starting from ν7has been identified by direct labeling of some rotational levels in the ν7manifold. High resolution FTIR spectra at ambient and at elevated temperatures have been recorded, too; it has thus become possible to extend the analysis to higher rotational quantum numbers. The previously analyzed ν9+ ν10level has been reinvestigated and ab-type Coriolis interaction with the nearby ν7+ ν11state has been observed. Rotational energy levels of ν7+ ν11and of ν9+ ν10have been fitted simultaneously, taking into account the local perturbations due to five dark states. From the shift of allK≠ 0 levels to higher frequencies in the ν10+ ν11state, a globala-type Coriolis interaction with ν8+ 2ν12has been identified.  相似文献   
13.
Water vapor infrared spectra have been measured using the Bruker IFS 120 HR Fourier transform spectrometer at the Physikalisch-Chemisches Institut of the Justus-Liebig-Universität Giessen. Spectra were recorded at pressure-broadening-limited resolution and at room temperature in the range of 1900-6600 cm−1. The use of fully evacuated transfer optics and a White-type multireflection cell made it possible to obtain pressure×pathlength products up to 31.27 mbar×288.5 m. These spectra have previously been used to determine experimental values of rovibrational line positions and upper energy levels of the 2ν2, ν1, and ν3 bands [Mikhailenko SN, Tyuterev VlG, Keppler KA, Winnewisser BP, Winnewisser M, Mellau G, et. al. The 2ν2 band of water: analysis of new FTS measurements and high-Ka transitions and energy levels. J Mol Spectrosc 1997;184: 330-49] and of the 3ν2, ν1+ν2, and ν2+ν3 bands [Mikhailenko SN, Tyuterev VlG, Starikov VI, Albert KK, Winnewisser BP, Winnewisser M, et al. Water spectra in the region 4200-6250 cm−1, extended analysis of ν1+ν2, ν2+ν3, and 3ν2 bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations. J. Mol. Spectrosc. 2002; 213: 91-121].This work presents the intensities of 3769 lines for the weak and medium transitions in the spectral range indicated. These data provide an independent source of experimental information which is complementary to intensity data available in the literature and can thus help to evaluate experimental errors and the reliability of these spectral line parameters.  相似文献   
14.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   
15.
The emission spectrum of HCN has been recorded at 1463 K using hot gas molecular emission (HOTGAME) spectroscopy in the wavenumber region of 2900–3500 cm−1 with a resolution of 0.01 cm−1. The dense emission spectrum was analyzed with the spectrum analysis software SyMath™ implemented in the Mathematica™ computer algebra system. This work reports the analysis of the band series up to v2 = 8 and of the band series up to v2 = 6.36 rovibronic (v1, v2, l, e/f, v3) substates of HCN including all l = 0, 2, 4, 6, 8 sublevels of the highly excited bending combination mode have been characterized for the first time and for the 22 known vibrational sublevels it was possible to improve the existing spectroscopic constants substantially. 18 (v1, v2, l, v3) vibrational sublevels are located for the first time relative to the 0000 state. The analysis reported here includes rovibrational states up to very large rotational excitations of J = 60–80. For the combination states the rotational states have been determined up to J = 86 which corresponds to 7000 cm−1 rotational excitation energy, this state is only 2000 cm−1 below the isomerization barrier. It was possible to determine for the first time the Lv high order rotational constant for many states reported in this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号