首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87550篇
  免费   2128篇
  国内免费   1920篇
化学   31761篇
晶体学   922篇
力学   7311篇
综合类   95篇
数学   33139篇
物理学   18370篇
  2023年   166篇
  2022年   315篇
  2021年   360篇
  2020年   379篇
  2019年   447篇
  2018年   10708篇
  2017年   10511篇
  2016年   6535篇
  2015年   1431篇
  2014年   910篇
  2013年   1077篇
  2012年   4639篇
  2011年   11312篇
  2010年   6306篇
  2009年   6670篇
  2008年   7253篇
  2007年   9274篇
  2006年   715篇
  2005年   1766篇
  2004年   1940篇
  2003年   2351篇
  2002年   1505篇
  2001年   662篇
  2000年   548篇
  1999年   370篇
  1998年   376篇
  1997年   275篇
  1996年   309篇
  1995年   221篇
  1994年   159篇
  1993年   159篇
  1992年   107篇
  1991年   122篇
  1990年   86篇
  1989年   87篇
  1988年   81篇
  1987年   74篇
  1986年   69篇
  1985年   54篇
  1984年   56篇
  1983年   47篇
  1982年   45篇
  1981年   51篇
  1980年   52篇
  1979年   51篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
971.
The metabolism of moulds results in the formation of various microbial volatile organic compounds (MVOCs). These substances can be used as an indicator for the presence of moulds in the indoor environment. Three different mould strains were cultivated on culture media and IMS spectra of gaseous mould metabolites were recorded using a portable mini system with a tritium source and a 5 cm drift cell. The headspace spectra are characteristic for mould species and their age. Typical gaseous components of the metabolites were identified and compared with results obtained from gas chromatography using a mass spectrometer detector. It was observed that the MVOCs formation depends on mould species and their growing stage with a maximum of MVOCs emission occurring during the first 10 days. These preliminary results show that IMS can be applied to detect MVOCs in indoor environment and indicate hidden mould growth.  相似文献   
972.
Papain (EC 3.4.22.2) has been chemically modified using two novel reagents including different anhydrides of 1,2,4-benzenetricarboxylic and pyromellitic acids. Then, the modified papain was immobilized on the activated cotton fabric by a two-step method. The number of free amino groups in the modified protein was investigated through the 2,4,6-trinitrobenzenesulfonic acid method. Energy dispersive spectrometer was used to characterize papain immobilization. Some parameters of both modified and native papain immobilized on cotton fabric, such as optimum temperature, optimum pH, and the stabilities for reservation in various detergents were studied and compared. The resultant papain had its optimum pH shifted from 6.0 to 9.0. Compared with immobilized native papain, the thermal stability and the resistance to alkali and washing detergent of immobilized modified enzyme were improved considerably. When the concentration of detergent was 20 mg/ml, the activity of the immobilized pyromellitic papain retained about 40% of its original activity, whereas the native papain was almost inhibited. This work demonstrated that the cotton fabric immobilized modified papain has potential applications in the functional textiles field.  相似文献   
973.
Hollow fiber supported liquid membrane extraction (HF-SLME) was used to separate and enrich trace lead from a large volume of 250 mL water sample to a final tiny volume of 30 μL of 1-octanol, 5 μL of which was inject into a tungsten coil electrothermal atomic absorption spectrometer (W-coil ET-AAS) for determination of lead. Some important parameters that influenced the extraction and determination were investigated in detail, such as the concentration of ammonium pyrrolidine dithiocarbamate (APDC), pH of sample solution, stirring rate, extraction time, pyrolysis current, atomization current, carrier gas flow rate, as well as interferences. Under the optimized conditions, a practical enrichment factor of 499 and a limit of detection (3σ) of 0.2 ng mL− 1 were obtained. The calibration curve was linear in the range of 0.5–10 ng mL− 1. The relative standard deviation (RSD) was 5.6% for five measurements of a 4 ng mL− 1 lead standard solution. The accuracy of this method was examined by the analysis of certified reference water samples (GBW(E)080398 and GSBZ(E) 50009-88) for lead. Finally, the proposed method was applied to the determination of lead in local tap water, pond water and river water, with recoveries in the range of 96–109% for spiked samples.  相似文献   
974.
Placobranchus ocellatus is well known to produce diverse and complex γ‐pyrone polypropionates. In this study, the chemical investigation of P. ocellatus from the South China Sea led to the discovery and identification of ocellatusones A–D, a series of racemic non‐γ‐pyrone polyketides with novel skeletons, characterized by a bicyclo[3.2.1]octane ( 1 , 2 ), a bicyclo[3.3.1]nonane ( 3 ) or a mesitylene‐substituted dimethylfuran‐3(2H)‐one core ( 4 ). Extensive spectroscopic analysis, quantum chemical computation, chemical synthesis, and/or X‐ray diffraction analysis were used to determine the structure and absolute configuration of the new compounds, including each enantiomer of racemic compounds 1 – 4 after chiral HPLC resolution. An array of new and diversity‐generating rearrangements is proposed to explain the biosynthesis of these unusual compounds based on careful structural analysis and comparison with six known co‐occurring γ‐pyrones ( 5 – 10 ). Furthermore, the successful biomimetic semisynthesis of ocellatusone A ( 1 ) confirmed the proposed rearrangement through an unprecedented acid induced cascade reaction.  相似文献   
975.
Development of eco‐friendly, cost‐effective, and high‐performance electrocatalysts to replace precious metal platinum for oxygen reduction reaction (ORR) has received increasing attention. Herein, we adopt a facile one‐pot strategy to embed Cu nanoparticles onto N‐doped carbon‐graphene (Cu@NC‐700). The Cu@NC‐700 exhibits robust and efficient ORR catalysis with positive half‐wave potential (~0.86 V vs. RHE) and low Tafel slope (33.9 mV?dec–1) in 0.1 M KOH solution. Meanwhile, it manifests remarkable electrochemical stability, and strong tolerance to methanol crossover and carbon monoxide poisoning. The synergistic effect between Cu‐N‐C sites, Cu nanoparticles, and N‐doped carbon support speeds up ORR electrocatalysis.  相似文献   
976.
Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H]4+, [M + Met]3+, and [M + Met –H]2+, where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H]4+ leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met]3+ is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met – H ]2+, a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu – H]2+ and [M + Eu]3+ yields a limited amount of peptide backbone cleavage; however, [M + Eu + H]4+ dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD.
Graphical Abstract ?
  相似文献   
977.
We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z?=?2700).
Graphical Abstract ?
  相似文献   
978.
A convenient and direct approach has been developed for the preparation of bis(indole) derivatives by one-pot four-component condensing of indole, aldehydes and active methylene compounds in the presence of 12-tungstophosphoric acid in aqueous media under silent and ultrasound methods. The remarkable advantages are the simplicity of the experimental procedures, short reaction times and high yields with the green aspects by avoiding toxic catalysts and solvents.  相似文献   
979.
Due to the critical role of glucose level in the diagnosis and treatment of diabetes, as well as the increasing number of diabetics, there is an overwhelming demand for developing glucose sensors. It is well acknowledged that these sensors, especially those based on glucose oxidase, have played an important role in blood glucose detection. Inspired by the attractive properties, nanomaterials, especially nanostructured carbon and metal/metal oxides, have been extensively explored to develop enzymatic glucose sensors with high sensitivity, fast response time, and satisfied stability. In this review, a brief history of glucose biosensors is firstly presented. Furthermore, we discuss the currently available fabrication possesses in the field of enzymatic glucose biosensors based on nanomaterials, focusing on the carbon-based, metal-based, and metal oxides-based nanocomposites. What is more, we discuss the challenges and attempt to give an outlook on the possible further developments.  相似文献   
980.
The process of reduction of Cr6+ ions (solution of potassium dichromate, K2Cr2O7) in a water cathode was studied during a DC discharge in air. The concentration range of Cr6+ was (5.7–19) ×10?5 mol/l and discharge current range was 20–80 mA. Cr6+ ions were shown to be reversibly reduced under a discharge action. The equilibrium degree of reduction increased with increasing initial concentration of the solution at fixed discharge current. At fixed initial concentration the reduction degree increased with increasing discharge current. The reduction degrees so obtained were 0.34–0.84. A kinetic scheme of the processes taking place in a solution was proposed. The calculated data obtained as a result of application of this scheme described well the experimental results on Cr6+ kinetics. The main processes of Cr6+ reduction and Cr3+ oxidation were revealed. HO 2 · radicals and hydrogen peroxide were shown to be responsible for Cr6+ reduction whereas ·OH radicals and O2 molecules provide the reverse process of Cr3+ oxidation to Cr6+. The mechanism of action of phenol additives improving the process efficiency is discussed. The efficiency of phenol action as a radical scavenger was shown to be determined with its mass-transfer to the reaction area rather than chemical reaction rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号