首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34863篇
  免费   8217篇
  国内免费   1389篇
化学   39819篇
晶体学   312篇
力学   451篇
数学   1803篇
物理学   2084篇
  2023年   3篇
  2022年   16篇
  2021年   143篇
  2020年   1215篇
  2019年   2574篇
  2018年   1009篇
  2017年   642篇
  2016年   3360篇
  2015年   3497篇
  2014年   3400篇
  2013年   4004篇
  2012年   2848篇
  2011年   2031篇
  2010年   2778篇
  2009年   2756篇
  2008年   2236篇
  2007年   1628篇
  2006年   1329篇
  2005年   1523篇
  2004年   1333篇
  2003年   1239篇
  2002年   1929篇
  2001年   1328篇
  2000年   1248篇
  1999年   334篇
  1998年   26篇
  1997年   22篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The existence of a homeostatic mechanism regulating reactive oxygen/nitrogen species (ROS/RNS) amounts inside phagolysosomes has been invoked to account for the efficiency of this process but could not be unambiguously documented. Now, intracellular electrochemical analysis with platinized nanowire electrodes (Pt‐NWEs) allowed monitoring ROS/RNS effluxes with sub‐millisecond resolution from individual phagolysosomes impacting onto the electrode inserted inside a living macrophage. This shows for the first time that the consumption of ROS/RNS by their oxidation at the nanoelectrode surface stimulates the production of significant ROS/RNS amounts inside phagolysosomes. These results establish the existence of the long‐postulated ROS/RNS homeostasis and allows its kinetics and efficiency to be quantified. ROS/RNS concentrations may then be maintained at sufficiently high levels for sustaining proper pathogen digestion rates without endangering the macrophage internal structures.  相似文献   
992.
The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO2 utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic‐scale study of metal–promoter interactions in silica‐supported Rh, Rh–Mn, and Rh–Mn–Fe catalysts by aberration‐corrected (AC) TEM. While the catalytic reaction leads to the formation of a Rh carbide phase in the Rh–Mn/SiO2 catalyst, the addition of Fe results in the formation of bimetallic Rh–Fe alloys, which further improves the selectivity and prevents the carbide formation. In all promoted catalysts, Mn is present as an oxide decorating the metal particles. Based on the atomic insight obtained, structural and electronic modifications induced by promoters are revealed and a basis for refined theoretical models is provided.  相似文献   
993.
Microglia, the brain‐resident macrophage, are involved in brain development and contribute to the progression of neural disorders. Despite the importance of microglia, imaging of live microglia at a cellular resolution has been limited to transgenic mice. Efforts have therefore been dedicated to developing new methods for microglia detection and imaging. Using a thorough structure–activity relationships study, we developed CDr20, a high‐performance fluorogenic chemical probe that enables the visualization of microglia both in vitro and in vivo. Using a genome‐scale CRISPR‐Cas9 knockout screen, the UDP‐glucuronosyltransferase Ugt1a7c was identified as the target of CDr20. The glucuronidation of CDr20 by Ugt1a7c in microglia produces fluorescence.  相似文献   
994.
995.
We describe a chemoenzymatic strategy that can give a library of differentially fucosylated and sialylated oligosaccharides starting from a single chemically synthesized tri‐N‐acetyllactosamine derivative. The common precursor could easily be converted into 6 different hexasaccharides in which the glucosamine moieties are either acetylated (GlcNAc) or modified as a free amine (GlcNH2) or Boc (GlcNHBoc). Fucosylation of the resulting compounds by a recombinant fucosyl transferase resulted in only modification of the natural GlcNAc moieties, providing access to 6 selectively mono‐ and bis‐fucosylated oligosaccharides. Conversion of the GlcNH2 or GlcNHBoc moieties into the natural GlcNAc, followed by sialylation by sialyl transferases gave 12 differently fucosylated and sialylated compounds. The oligosaccharides were printed as a microarray that was probed by several glycan‐binding proteins, demonstrating that complex patterns of fucosylation can modulate glycan recognition.  相似文献   
996.
997.
Localized surface plasmon resonance (LSPR) excitation of noble metal nanoparticles has been shown to accelerate and drive photochemical reactions. Here, LSPR excitation is shown to enhance the electrocatalysis of a fuel‐cell‐relevant reaction. The electrocatalyst consists of PdxAg alloy nanotubes (NTs), which combine the catalytic activity of Pd toward the methanol oxidation reaction (MOR) and the visible‐light plasmonic response of Ag. The alloy electrocatalyst exhibits enhanced MOR activity under LSPR excitation with significantly higher current densities and a shift to more positive potentials. The modulation of MOR activity is ascribed primarily to hot holes generated by LSPR excitation of the PdxAg NTs.  相似文献   
998.
Reaction of a tethered triamine ligand with Bi(NMe2)3 gives a Bi triamide, for which a BiI electronic structure is shown to be most appropriate. The T‐shaped geometry at bismuth provides the first structural model for edge inversion in bismuthines and the only example of a planar geometry for pnictogen triamides. Analogous phosphorus compounds exhibit a distorted pyramidal geometry because of different Bi?N and P?N bond polarities. Although considerable BiI character is indicated for the title Bi triamide, it exhibits reactivity similar to BiIII electrophiles, and expresses either a vacant or a filled p orbital at Bi, as evidenced by coordination of either pyridine N‐oxide or W(CO)5. The product of the former shows evidence of coordination‐induced oxidation state change at bismuth.  相似文献   
999.
An atom‐economic and highly efficient vinylogous umpolung strategy is developed for deconjugated carbonyl compounds, which generate electron‐deficient π‐allylpalladium complexes with Pd(OAc)2 under ligand‐free conditions. In cooperation with a chiral‐phosphonium‐based phase‐transfer catalyst, the asymmetric direct oxidative allylic alkylations of 3‐substituted oxindoles are furnished under O2 atmosphere. The γ‐ or even remote ?‐regioselective alkylation products, with substantial substituents, are delivered with excellent enantioselectivity, and can be further used to access diverse chiral spirocyclic architectures effectively. The Mukaiyama dienol silyl ether can be utilized similarly, indicating that the current active π‐allylpalladium species results from tautomerization of the PdII‐dienolate intermediate.  相似文献   
1000.
Racemic 3,4‐dihydro‐2H‐pyrroles, hypothetical intermediates of the Barton–Zard reaction, were synthesized in a highly diastereoselective manner and fully characterized for the first time. Kinetic resolution of the dihydropyrroles with a quinine‐derived thiourea afforded the (+)‐3‐arylpyrrole products and recovered (+)‐3,4‐dihydro‐2H‐pyrroles with high efficiency (s‐factor up to 153). The resolved (+)‐3,4‐dihydro‐2H‐pyrroles underwent subsequent aromatization with a quinidine‐derived thiourea catalyst to afford (?)‐3‐arylpyrroles with excellent central‐to‐axial chirality transfer. In contrast to the well‐accepted Barton–Zard mechanism, the aromatization of the 3,4‐dihydro‐2H‐pyrroles in the presence of a bifunctional catalyst is believed to proceed by an unprecedented sequence involving syn elimination of HNO2 and aromatization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号