首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   9篇
  国内免费   1篇
化学   196篇
晶体学   8篇
力学   37篇
数学   63篇
物理学   74篇
  2023年   3篇
  2022年   11篇
  2021年   11篇
  2020年   14篇
  2019年   15篇
  2018年   20篇
  2017年   21篇
  2016年   26篇
  2015年   14篇
  2014年   21篇
  2013年   44篇
  2012年   38篇
  2011年   23篇
  2010年   16篇
  2009年   18篇
  2008年   17篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   8篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1981年   2篇
排序方式: 共有378条查询结果,搜索用时 500 毫秒
121.
In the current study, a nanophotocatalyst doped with of TiO2 and Fe2O3 nanoparticles supported on Iranian clinoptilolite was synthesized and characterized by XRD, XRF, SEM, and EDX analyses. The results suggested the successful loading of TiO2 and Fe2O3 nanoparticles onto the surface of clinoptilolite. The SEM images confirmed the average size of nanoparticles deposited on zeolite, which was about 20–40 nm. Furthermore, application of the synthesized photocatalyst in photocatalytic degradation of Acid Black 172 dye was studied using the Taguchi method and the chosen parameters were as follows: pH (2–7), dye concentration (50–200 mg/l), irradiation time (30–120 min), and catalyst dosage (0.5–1.5 g/l). The results indicate that dye concentration, pH, and irradiation time are respectively the most effective factors in these experiments while with the minimum dosage of the catalyst (0.5 g/l), up to 90 % removal efficiency could be achieved. The optimum value for each parameter was pH = 2, dye concentration = 50 mg/l, catalyst dosage = 1 g/l and irradiation time = 60 min, and the dye removal efficiency reached up to 100 % at these optimal conditions. Furthermore, after five-times recycling and reusing the catalyst, the efficiency of the photocatalytic degradation was reduced from 91.5 to 65.9 %, which is still an acceptable value.  相似文献   
122.
Thermo‐mechanically durable industrial polymer nanocomposites have great demand as structural components. In this work, highly competent filler design is processed via nano‐modified of micronic SiO2/Al2O3 particulate ceramics and studied its influence on the rheology, glass transition temperature, composite microstructure, thermal conductivity, mechanical strength, micro hardness, and tribology properties. Composites were fabricated with different proportions of nano‐modified micro‐composite fillers in epoxy matrix at as much possible filler loadings. Results revealed that nano‐modified SiO2/Al2O3 micro‐composite fillers enhanced inter‐particle network and offer benefits like homogeneous microstructures and increased thermal conductivity. Epoxy composites attained thermal conductivity of 0.8 W/mK at 46% filler loading. Mechanical strength and bulk hardness were reached to higher values on the incorporation of nano‐modified fillers. Tribology study revealed an increased specific wear rate and decreased friction coefficient in such fillers. The study is significant in a way that the design of nano‐modified mixed‐matrix micro‐composite fillers are effective where a high loading is much easier, which is critical for achieving desired thermal and mechanical properties for any engineering applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
123.
124.

Excitation functions and theoretical yields via charge particle induced reactions were evaluated using EMPIRE-3.2.2 and ALICE/ASH codes and the obtained results have been discussed and compared with the available reported experimental data. It has been verified that natCu(p,n)65Zn reaction is the optimum 65Zn production route. The 65Zn was produced using natCu(p,xn) 65Zn reaction in the energy range of 16.8 → 12.2 MeV with the thick target yield of 0.15 ± 0.005 MBq/μA h. The 65Zn radionuclide was purified by anion exchange chromatography.

  相似文献   
125.
126.
The approximation of solutions to partial differential equations by tensorial separated representations is one of the most efficient numerical treatment of high dimensional problems. The key step of such methods is the computation of an optimal low-rank tensor to enrich the obtained iterative tensorial approximation. In variational problems, this step can be carried out by alternating minimization (AM) technics, but the convergence of such methods presents a real challenge. In the present work, the convergence of rank-one AM algorithms for a class of variational linear elliptic equations is studied. More precisely, we show that rank-one AM-sequences are in general bounded in the ambient Hilbert tensor space and are compact if a uniform non-orthogonality condition between iterates and the reaction term is fulfilled. In particular, if a rank-one AM-sequence is weakly convergent then it converges strongly and the common limit is a solution of the rank-one optimization problem.  相似文献   
127.
A new mixed matrix polyvinyl chloride-based heterogeneous cation exchange membrane was prepared by incorporation of carboxy methyl cellulose-co-Fe3O4 nanoparticles through solution casting technique. The effect of simultaneous using of carboxy methyl cellulose and iron oxide nanoparticles in the casting solution on the physicochemical properties of membranes was studied. SOM images showed uniform particles distribution and uniform surfaces for the membranes relatively. The SEM images exhibited regular direction/spatial orientation for the CMC-co-Fe3O4 nanoparticles in the membrane matrix. XRD patterns showed that membrane heterogeneity was enhanced by using of Fe3O4 nanoparticles. Membrane ion exchange capacity, membrane surface hydrophilicity, membrane potential, surface charge density, transport number, selectivity, and ionic flux were increased by using CMC/Fe3O4 nanoparticles in membrane matrix. Results showed that membrane areal electrical resistance was declined up to 3.8 Ω cm2 by utilizing CMC/Fe3O4 nanoparticles in the casting solution. Also PVC/CMC-co-Fe3O4 membrane showed higher transport number, selectivity, flux, and electrical conductivity compared to PVC/CMC membrane and unmodified ones. Electrodialysis experiment in laboratory scale showed higher dialytic rate in lead ions removal for PVC/CMC-co-Fe3O4 nanoparticle-mixed matrix ion exchange membrane compared to PVC/CMC membrane and pristine one.  相似文献   
128.
The detection and quantification of biomarkers have gained more attention in the medical discipline to evaluating disease progression to manage medical treatment. Biomarkers range from gases to biological macromolecules. Because of the nanomolar range levels of typical biomarkers in plasma, blood, urine, exhalation samples, and other biological fluids as well as complex matrix of biological media, adequate sample preparation methods should be used for quantification of biomarkers. Biomarkers are discussed here generally classified mainly into two subgroups which arisen from disease or exposure compounds. The analytical method is critical for the validity/reliability of a biomarker. Accuracy, precision, reproducibility, recovery, sensitivity, and specificity all have high influence to the consistency with the limit and reference values concerned. In this paper, developments in well-established liquid-phase microextraction techniques for the clinical analysis of biological samples will be reviewed and discussed. This article presents an overview of microextraction methods for biological samples, focusing especially on biomarkers.  相似文献   
129.
130.
Particle swarm optimization (PSO) is an evolutionary, easy-to-implement technique to design optical diffraction gratings. Design of reflection and transmission guided-mode resonance (GMR) grating filters using PSO is reported. The spectra of the designed filters are in good agreement with the design targets in a reasonable computation time. Also, filters are designed with a genetic algorithm (GA) and the results obtained by the GA and PSO are compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号