In order to enhance the thermal properties of turbine oil (TO), three different nanoparticles (CuO, Al2O3, and TiO2) are loaded into the TO. To measure the thermal performance of nanoparticle-based TO nanofluids at laminar flow and under constant heat flux boundary conditions, an experimental setup was applied. The obtained data clearly demonstrate the positive effect of all nanoparticles on the heat transfer rate of TO. As the most important factor, the heat transfer coefficient of the abovementioned two-phase systems is increased upon increasing both the volume concentration and the flow rate. An adaptive neuro-fuzzy inference system (ANFIS) is applied for modeling the effect of critical parameters on the heat transfer coefficient of nanoparticle-TO based nanofluids numerically. The results are compared with experimental ones for training and test data. The results suggest that the developed model is valid enough and promising for predicting the extant of the heat transfer coefficient. R2 and MSE values for all data were 0.990208751 and 108.1150734, respectively. Based on the results, it is obvious that our proposed modeling by ANFIS is efficient and valid, which can be expanded for more general states. 相似文献
The catalytic activity of dioxidobis{2-[(E)-p-tolyliminomethyl]phenolato}molybdenum(VI) complex was studied, for the first time, in the selective oxidation of various primary and secondary alcohols using tert-BuOOH as oxidant under organic solvent-free conditions at room temperature. The effect of different solvents was studied in the oxidation of benzyl alcohol in this catalytic system. It was found that, under organic solvent-free conditions, the catalyst oxidized various primary and secondary alcohols to their corresponding aldehyde or ketone derivatives with high yield. The effects of other parameters such as oxidant and amount of catalyst were also investigated. Among different oxidants such as H2O2, NaIO4, tert-BuOOH, and H2O2/urea, tert-BuOOH was selected as oxygen donor in the oxidation of benzyl alcohol. Also, it was found that oxidation of benzyl alcohol required 0.02 mmol catalyst for completion. Dioxomolybdenum(VI) Schiff base complex exhibited good catalytic activity in the oxidation of alcohols with tert-BuOOH under mild conditions. In this catalytic system, different primary alcohols gave the corresponding aldehydes in good yields without further oxidation to carboxylic acids. 相似文献
Research on Chemical Intermediates - Magnetically separable Fe3O4 nanoparticles were used as an environmental friendly catalyst for the synthesis of mono- and bis-tetrahydro-4H-chromene and mono-... 相似文献
Research on Chemical Intermediates - In this article, we have demonstrated a green and facile one-pot approach for the regio- and chemoselective synthesis of... 相似文献
The catalytic activity of an oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles, γ-Fe2O3@[VO(salenac-OH)] in which salenac-OH?=?[9-(2′,4′-dihydroxyphenyl)-5,8-diaza-4-methylnona-2,4,8-trienato](-2), was explored in the oxidation of hydrocarbons with tert-butyl hydroperoxide (TBHP, 70% aqueous solution) as oxidant. High catalytic activity and selectivity were demonstrated by this magnetic nanocatalyst in alkane hydroxylation and alkene epoxidation, and the corresponding products were obtained with good to excellent yields in acetonitrile at 50 °C. Reasonable catalytic activity was presented by this supported catalyst in the epoxidation of linear alkenes under optimal reaction conditions. In addition, alkylbenzene derivatives and cycloalkanes can be oxidized to their corresponding alcohols and ketones with good yields in this catalytic system. It is possible to magnetically separate the γ-Fe2O3@[VO(salenac-OH)] catalyst and reuse it four times without losing the activity significantly. Moreover, the catalyst structure and morphology do not change after recovery, as indicated by comparing scanning electron microscopy (SEM) image, Fourier transform infrared (FT-IR) and diffuse reflectance spectrum (DRS) of the recovered catalyst with those of the fresh catalyst.
The cyclometalated complexes [Pt(ppy)R(SMe(2))] or [Pt(bhq)R(SMe(2))], where ppyH = 2-phenylpyridine, bhqH = benzo[h]quinoline and R = methyl or p-tolyl, react with bis(diphenylphosphino)ethane, dppe, in a 1:1 ratio to give the corresponding complexes [Pt(κ(1)-C-ppy)R(dppe)] or [Pt(κ(1)-C-bhq)R(dppe)], in which the ppy or bhq ligands are monodentate and dppe is chelating. The similar reaction in a 2:1 ratio gives the binuclear complexes [{Pt(ppy)R}(2)(μ-dppe)] or [{Pt(bhq)R}(2)(μ-dppe)], in which the dppe ligands are in the unusual bridging bidentate bonding mode. 相似文献
Nano-sized Cu6Sn5 alloy powders were prepared by a co-precipitation reductive route using a hydrothermal method at 80 °C. The nano-size and morphology of the synthesized Cu6Sn5 alloy powders were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained morphologies, chemical compositions are comparatively discussed. A variety of synthesis parameters, such as time, capping agent and sort of reductant, has an effect on the morphology of the obtained materials, and will be particularly highlighted. 相似文献
A novel and highly efficient approach for the synthesis of H2Me2bqb and H2Me2bpb using ionic liquid as an environmentally benign reaction medium has been developed, eliminating the need for the pyridine as a toxic solvent. The Ni(II) complex of the dianionic ligand Me2bqb2−, [Me2bqb2− = 1,2-bis(quinoline-2-carboxamide)-4,5-dimethyl-benzene dianion], has been synthesized and characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structure of [Ni(Me2bqb)] (1), has been determined by X-ray crystallography. The complex exhibits distorted square-planar NiN4 coordination geometry with two short and two long Ni–N bonds (Ni–N ∼1.85 and ∼1.96 Å, respectively). The electrochemical behavior of [Ni(Me2bqb)] (1), has been studied by cyclic voltammetry and compared with the analogous complex, [Ni(Me2bpb)] (2). 相似文献