首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1965篇
  免费   118篇
  国内免费   32篇
化学   1362篇
晶体学   13篇
力学   133篇
数学   336篇
物理学   271篇
  2024年   3篇
  2023年   11篇
  2022年   41篇
  2021年   69篇
  2020年   81篇
  2019年   82篇
  2018年   113篇
  2017年   94篇
  2016年   157篇
  2015年   110篇
  2014年   145篇
  2013年   240篇
  2012年   172篇
  2011年   153篇
  2010年   126篇
  2009年   116篇
  2008年   101篇
  2007年   72篇
  2006年   47篇
  2005年   34篇
  2004年   26篇
  2003年   15篇
  2002年   18篇
  2001年   11篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   6篇
  1992年   9篇
  1991年   2篇
  1990年   2篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有2115条查询结果,搜索用时 15 毫秒
111.
Pyrite acts as a catalyst in the mineral processing, and the speed of ferric ion reduction and mineral decomposition increases with increasing cathodic points. In this study, the ferric ion interaction on the (100) and (110) surfaces of pyrite was studied using the density functional theory calculations. The analysis of stability, density of states, and electron density were performed to understand the interaction between the ferric ion and pyrite surfaces. The results showed that pyrite surface is chemically active and tends to absorb ferric ion between two surface sulfur atoms. The hyperconjugation between the 3d orbital of ferric ion and the 3p or 3d orbitals of surface atoms provides the conditions for the Fe3+ ion adsorption. The molecular orbital (MO) and electron density analyses indicate that the 3p orbitals of S atoms play a more important role in bonds formations relative to the 3d orbitals. The (110) surface is more active, and the adsorption energy is larger than that of surface (100), which is the result of decreased cation coordination and the presence of sulfur at the surface. Subsequently, the interaction of the Fe2+ ion, as product of Fe3+ ion reduction and its competitor for adsorption, on the surfaces was studied. The Fe2 + ion adsorbs stronger at the surface of (110), and the adsorption energies at (100) and (110) surfaces were obtained as −24 and −47 kcal/mol, respectively. In general, the Fe3+ ion is a stronger oxidizing agent than Fe2+ on pyrite surfaces.  相似文献   
112.
Microfluidic system, or lab-on-a-chip, has grown explosively. This system has been used in research for the first time and then entered in the clinical section. Due to economic reasons, this technique has been used for screening of laboratory and clinical indices. The microfluidic system solves some difficulties accompanied by clinical and biological applications. In this review, the interpretation and analysis of some recent developments in microfluidic systems in biomedical applications with more emphasis on tissue engineering and cancer will be discussed. Moreover, we try to discuss the features and functions of microfluidic systems.  相似文献   
113.
Research on Chemical Intermediates - 4H-benzo[b]pyrans were obtained rapidly in high yields using triethanolamine as an efficient, eco-friendly and low-cost basic catalyst. One-pot three-component...  相似文献   
114.
Alanine is used as a transfer standard dosimeter for gamma ray and electron beam calibration. An important factor affecting its dosimetric response is humidity which can lead to errors in absorbed dose calculations. Ab initio molecular dynamics calculations were performed to determine the environmental effects on the electron paramagnetic resonance (EPR) parameters of L-α-alanine radicals in acidic and alkaline solutions. A new result, not dissimilar to the closed-shell amino acid molecule alanine, is that the non-zwitterionic form of the alanine radical is the stable form in the gas phase while the zwitterionic neutral alanine radical is not a stable structure in the gas phase. Geometric and EPR parameters of radicals in both gas and solution phases are found to be dependent on hydrogen bonding of water molecules with the polar groups and on dynamic solvation. Calculations on the optimized free radicals in the gas phase revealed that for the neutral radical, hydrogen bonding to water molecules drives a decrease in the magnitudes of g-tensor components g xx and g yy without affecting neither g zz component nor the hyperfine coupling constants (HFCCs). The transfer from the gas to solution phase of the alanine radical anion is accompanied with an increase in the spin density on the carboxylic group's oxygen atoms. However, for the neutral radical, this transfer from gas to solution phase is accompanied with the decrease in the spin density on oxygen atoms. Calculated isotropic HFCCs and g-tensor of all radicals are in good agreement with experiment in both acidic and alkaline solutions.  相似文献   
115.
Journal of Thermal Analysis and Calorimetry - In this study, a two-dimensional inverse algorithm is developed to determine the heat transfer coefficient distribution of a two-phase air–water...  相似文献   
116.

Safety issues of Li-ion batteries imposed by unfavorable thermal behavior accentuate the need for efficient thermal management systems to prevent the runaway conditions. To that end, a hybrid thermal management system is designed and further investigated numerically and experimentally in the present study. The passive cooling system is fabricated by saturating copper foam with paraffin as the phase change material (PCM) and integrated with an active cooling system with alumina nanofluid as the coolant fluid. Results for various Reynolds numbers and different heating powers indicate that the hybrid nanofluid cooling system can successfully fulfill safe operation of the battery during stressful operating conditions. The maximum time in which all PCM field is changed to the liquid phase is defined as the onset of the stressful conditions. Therefore, the start time of stressful conditions at 41 W and Re 420 is increased from 3700 s with nanofluid composed of 1% volume fraction nanoparticles (VF-1%) to 4600 s with nanofluid VF-2% during high current discharge rates. Nanofluid cooling extends the operating time of the battery in comparison with the water-based cooling system with 200-s (nanofluid with volume fraction of 1%) and 900-s (nanofluid with volume fraction of 2%) increases in operating time at Reynolds of 420. Using nanofluid, instead of water, postpones the onset of paraffin phase transition effectively and prolongs its melting time which consequently leads to a decrease in the rate of temperature rise.

  相似文献   
117.
Cao  Lu  Xiao  Bing  Golestani  Mehdi 《Nonlinear dynamics》2020,100(3):2505-2519
Nonlinear Dynamics - A robust fixed-time control framework is presented to stabilize flexible spacecraft’s attitude system with external disturbance, uncertain parameters of inertia, and...  相似文献   
118.
Keighobadi  Javad  Fateh  Mohammad Mehdi  Xu  Bin 《Nonlinear dynamics》2020,100(3):2609-2634
Nonlinear Dynamics - The aim of this paper is to tackle the problem of adaptive fuzzy voltage-based tracking control for uncertain electrically driven robotic manipulators subject to input delay...  相似文献   
119.
Moini M  Huang H 《Electrophoresis》2004,25(13):1981-1987
We introduce capillary electrophoresis-mass spectrometry (CE-MS) as an efficient means for the on-line separation and identification of protein mixtures. It was found that while CE/electrospray ionization (ESI)-MS analysis of whole-cell lysate was too complicated for the one-dimensional CE-MS analysis, the technique was useful for the analysis of protein mixtures of moderate complexity (approximately 50 intact proteins). CE/ESI-MS was applied to the subcellular proteomics of ribosomal Escherichia coli. 55 out of the 56 ribosomal proteins were detected with ease by using only approximately 3.4 ng of ribosomal proteins. In addition, it was found that the mass accuracy of the conventional MS (such as quadrupole ion traps) was good enough to identify many post-translational modifications of the intact proteins by simply comparing their measured average molecular weight with the average molecular weight predicted from gene banks.  相似文献   
120.
The platinum(II) complex [PtMe2(bpy)] (bpy = 2,2′-bipyridine) reacted with a large excess of dihaloalkanes X(CH2)nX (n = 1, X = Cl; n = 4, X = Br) to form the platinum(IV) complexes [PtMe2X{(CH2)nX}(bpy)] (n = 1, X = Cl, 1a; n = 4, X = Br, 1b). The reaction of complexes 1a and 1b with SnBr2 resulted in insertion of SnBr2 into Pt–X (X = Cl, Br) bond to afford the trihalostannyl complexes [PtMe2(SnBr2X){(CH2)nX}(bpy)] (n = 1, X = Cl, 2a; n = 4, X = Br, 2b). The synthesis of such trihalostannylplatinum(IV) complexes is reported for the first time. The complex 2a was decomposed in CH2Cl2 solution and single crystals of [PtBr2(bpy)] (3a) were obtained. The X-ray structure determination of 3a revealed a new polymorphic form of [PtBr2(bpy)]. The molecules undergo a remarkable stacking along the b-axis to form a zigzag Pt?Pt?Pt chain containing both short (3.799 Å) and long (5.175 Å) Pt?Pt separations through the crystal. The crystal structure is compared to that of the yellow modification of [PtBr2(bpy)].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号