收费全文 | 2017篇 |
免费 | 97篇 |
国内免费 | 32篇 |
化学 | 1392篇 |
晶体学 | 13篇 |
力学 | 133篇 |
数学 | 336篇 |
物理学 | 272篇 |
2024年 | 3篇 |
2023年 | 11篇 |
2022年 | 41篇 |
2021年 | 70篇 |
2020年 | 81篇 |
2019年 | 82篇 |
2018年 | 113篇 |
2017年 | 94篇 |
2016年 | 157篇 |
2015年 | 111篇 |
2014年 | 147篇 |
2013年 | 249篇 |
2012年 | 172篇 |
2011年 | 154篇 |
2010年 | 128篇 |
2009年 | 116篇 |
2008年 | 107篇 |
2007年 | 80篇 |
2006年 | 48篇 |
2005年 | 34篇 |
2004年 | 26篇 |
2003年 | 15篇 |
2002年 | 18篇 |
2001年 | 11篇 |
2000年 | 3篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 3篇 |
1993年 | 6篇 |
1992年 | 9篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 5篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
The present work deals with numerical investigations on heat transfer characteristics and friction factor of aqueous CuO nanofluids flow in a set of four microchannels connected in parallel under laminar regime. For each single phase, volume of fluid, mixture and Eulerian models, a particular computer code is developed to carefully simulate this problem. The three-dimensional steady-state governing equations are solved through finite volume method. The primary aim of this study is to comparatively distinguish the most appropriate and accurate model for numerical studies of nanofluids in microchannels. The results are compared with one another and the data obtained from an experimental work. Regarding the results, an acceptable consistency is observed for all models with the experimental data. The current study truly demonstrates that applying single-phase model to simulate and evaluate the laminar flow of CuO–water nanofluid inside microchannels with uniform wall temperature is more modest, precise and reliable compared with two-phase models.
相似文献In the present research, magnesium aluminate spinel was prepared as catalyst support using a novel, facile, and efficient mechanochemical method. The Co-promoted catalysts with 20 wt.% of Ni were fabricated using an impregnation route and the samples were analyzed by the X-ray diffraction (XRD), N2 adsorption/desorption (BET), temperature-programmed reduction and desorption (H2-TPR and O2-TPD), and field emission scanning electron microscopy (FESEM) tests. The results confirmed that all samples have a mesoporous structure with a high specific surface area and the presence of cobalt caused complete CH4 oxidation at low temperatures, and no side reactions were observed. The results indicated that the 3%Co-20%Ni/MgAl2O4 catalyst was the optimal sample among the prepared catalysts, owing to the improvement of reduction features and oxygen mobility. The 50 and 90% of methane conversion was obtained at 530 and 600 °C, respectively. Also, the influence of calcination temperature, GHSV, and feed ratio was determined on the catalytic activity. The obtained outcomes revealed that the calcination temperature has a significant effect on the textural properties and catalytic efficiency. The sample calcined at 700 °C showed the weakest performance, which was related to the sintering of particles at high temperatures. The catalytic stability showed that the 3%Co-20%Ni/MgAl2O4 has acceptable stability during 600 min time of reaction.
Graphical abstract 相似文献The catalytic activity of an oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles, γ-Fe2O3@[VO(salenac-OH)] in which salenac-OH?=?[9-(2′,4′-dihydroxyphenyl)-5,8-diaza-4-methylnona-2,4,8-trienato](-2), was explored in the oxidation of hydrocarbons with tert-butyl hydroperoxide (TBHP, 70% aqueous solution) as oxidant. High catalytic activity and selectivity were demonstrated by this magnetic nanocatalyst in alkane hydroxylation and alkene epoxidation, and the corresponding products were obtained with good to excellent yields in acetonitrile at 50 °C. Reasonable catalytic activity was presented by this supported catalyst in the epoxidation of linear alkenes under optimal reaction conditions. In addition, alkylbenzene derivatives and cycloalkanes can be oxidized to their corresponding alcohols and ketones with good yields in this catalytic system. It is possible to magnetically separate the γ-Fe2O3@[VO(salenac-OH)] catalyst and reuse it four times without losing the activity significantly. Moreover, the catalyst structure and morphology do not change after recovery, as indicated by comparing scanning electron microscopy (SEM) image, Fourier transform infrared (FT-IR) and diffuse reflectance spectrum (DRS) of the recovered catalyst with those of the fresh catalyst.
相似文献The complex anatomy of teeth limits the accessibility and efficacy of regenerative treatments. Therefore, the application of well-known inducers as injectable hydrogels for the regeneration of the dentin-pulp complex is considered a promising approach. In this regard, this study aimed to develop an injectable hydrogel containing mineral trioxide aggregate (MTA). The injectable chitosan/oxidized-nanocrystalline cellulose/MTA (CS/OCNC/MTA) hydrogels were prepared, and the physicochemical properties of these hydrogels were evaluated by TGA, FTIR, Rheological analysis, and SEM. Moreover, the effect of MTA on the swelling and degradability of scaffolds was assessed. The proliferative effects of synthesized hydrogels were also determined on human dental pulp stem cells (hDPSCs) by MTT assay. For induction of differentiation and biomineralization in these cells, the alkaline phosphatase activity and Alizarin Red S staining tests were performed in the presence of fabricated scaffolds. The proliferation of hDPSCs was significantly increased in the presence of these hydrogels. Moreover, the addition of MTA to hydrogel structure dramatically improved the differentiation of hDPSCs. These results suggested that this novel injectable hydrogel provides appropriate physiochemical properties and can be considered a promising scaffold for regenerative endodontic procedures.
Graphical abstract 相似文献