首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   8篇
  国内免费   1篇
化学   67篇
晶体学   9篇
力学   1篇
数学   16篇
物理学   17篇
  2023年   4篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有110条查询结果,搜索用时 175 毫秒
101.
Pharmacological chaperones (PCs) represent a promising therapeutic strategy for treatment of lysosomal storage disorders based on enhanced stabilization and trafficking of mutant protein upon orthosteric and/or allosteric binding. Herein, we introduce a simple yet reliable enzyme assay using capillary electrophoresis (CE) for inhibitor screening of PCs that target the lysosomal enzyme, β-glucocerebrosidase (GCase). The rate of GCase-catalyzed hydrolysis of the synthetic substrate, 4-methylumbelliferyl-β-d-glucopyranoside was performed using different classes of PCs by CE with UV detection under standardized conditions. The pH and surfactant dependence of inhibitor binding on recombinant GCase activity was also examined. Enzyme inhibition studies were investigated for five putative PCs including isofagomine (IFG), ambroxol, bromhexine, diltiazem, and fluphenazine. IFG was confirmed as a potent competitive inhibitor of recombinant GCase with half-maximal inhibitory concentration (IC 50 ) of 47.5 ± 0.1 and 4.6 ± 1.4 nM at pH 5.2 and pH 7.2, respectively. In contrast, the four other non-carbohydrate amines were demonstrated to function as mixed-type inhibitors with high micromolar activity at neutral pH relative to acidic pH conditions reflective of the lysosome. CE offers a convenient platform for characterization of PCs as a way to accelerate the clinical translation of previously approved drugs for oral treatment of rare genetic disorders, such as Gaucher disease.  相似文献   
102.
64Cu (t1/2 12.7 h) is a versatile radionuclide owing to its unique decay scheme and exhibits three types of decay electron capture (41%), β (40%), β+ (19%) that is useful in nuclear medicine applications. Different batches of natural copper oxide (CuO) and 99.9% enriched 63CuO targets were irradiated in research reactors at a neutron flux of 6.6 × 1012 n cm−2 s−1 for duration of 3 days. Irradiated samples dissolved in hydrochloric acid solution were measured in HPGe-MCA system, the activity of 64Cu, co-produced radionuclide impurities and radionuclide purity was determined. Average specific activity of 254 GBq 64Cu per g Cu and ~348 GBq 64Cu per g Cu was recorded at the end of irradiation from natural and enriched CuO targets, respectively.  相似文献   
103.
The diastereoselective intramolecular electroreductive coupling of several β-ketoesters and β-ketoamides has been accomplished at a tin cathode in ionic liquids and isopropanol (9:1). The ionic liquids used are 1-butyl-3-methylimidazolium bromide [BMIM]Br, 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4, 1-methoxyethyl-3-methylimidazolium trifluoroacetate [MOEMIM]CF3COO and 1-methoxyethyl-3-methylimidazolium mesylate [MOEMIM]Ms. This methodology offers a clean and green process for the synthesis of functionalized carbocycles in good yields with excellent stereochemical control at three stereogenic centres.  相似文献   
104.
Multiwalled carbon nanotube-modified polyacrylamide gels have been employed for the electrophoretic separation of proteins. Two approaches are compared in this investigation, one using nanotubes only as fillers inside the gel matrix and the other using nanotubes as catalyst for polymerization of acrylamide. In both the cases, polymerization of acryl-amide/bisacrylamide has been carried out in situ in the presence of nanotubes dispersed in the gel buffer containing monomer and cross-linker. In the former case, initiator and catalyst have been added after ultrasonication of nanotubes in the gel buffer mixture where the nanotubes play the role of filler. On the other hand, the second approach precludes use of catalyst and involves addition of initiator alone during ultrasonication of nanotubes in the gel buffer containing monomer and cross-linker, which leads to the formation of nanotube-grafted gel after 25 min. When nanotubes are used as a catalyst instead of N,N,N',N'-tetramethylethylenediamine, pore size distribution of the gel matrix and linearity of molecular weight calibration plots are found to be improved. In addition, other issues associated with the use of an external catalyst like handling the moisture-sensitive and corrosive reagent and associated irreproducibility are addressed in this approach.  相似文献   
105.
64Cu is an useful radionuclide for both PET imaging and targeted therapy, as it decays by three different modes, namely, electron capture (41%), ??? (40%) and positron emission (19%). 64Cu is generally produced by 64Ni (p, n) reaction in a cyclotron for medical use. High specific activity ??no carrier added?? grade 64Cu by 64Zn (n, p) route is an alternative for research studies and was hence explored. 10?mg zinc foil target (48.63% in 64Zn) was irradiated in the medium flux reactor Dhruva at a thermal neutron flux of ~5.6?×?1013 n?cm?2?s?1 for 3?days. The irradiated Zn foil was dissolved in 5?mL 10?M HCl and 64Cu was separated by anion exchange chromatography (Dowex 1?×?8; 100?C200 mesh) at 3?M HCl conditions. 64Cu radioactivity content and its radionuclide purity were ascertained by ??-ray spectrometry using HPGe detector coupled to a 4?K multichannel analyser system. Radiochemical separation yielded a radionuclidic purity of 99.9% 64Cu.  相似文献   
106.
High-performance liquid chromatography (HPLC) coupled to atmospheric pressure chemical ionization (APCI) mass spectrometry was used for the separation and detection of amino acid and peptide enantiomers. With detection limits as low as 250 pg, 25 amino acids enantiomers were baseline resolved on a Chirobiotic T chiral stationary phase. APCI demonstrated an order of magnitude better sensitivity over electrospray ionization (ESI) for free amino acids and low molecular mass peptides at the high LC flow-rates necessary for rapid analysis. As the peptide chain length increased (peptides with M(r) > or = 300 Da), however, ESI proved to be the more ideal atmospheric pressure ionization source. A mobile phase consisting of 1% (w/w) ammonium trifluoroacetate in methanol and 0.1% (w/w) formic acid in water increased the sensitivity of the APCI method significantly. A step gradient was then used to separate simultaneously all 19 native protein amino acid enantiomers in less than 20 min using extracted ion chromatograms.  相似文献   
107.
LC-electrospray ionization (ESI) MS conditions were optimized for the individual chiral separation of 19 compounds of pharmaceutical interest using the macrocyclic glycopeptide-based chiral stationary phases in both polar organic and reversed-phase modes (RPM). The influence of mobile phase composition and MS additive type on sensitivity was investigated for all classes of compounds tested. Compounds with amine or amide groups were efficiently separated, ionized, and detected with the addition of 0.1% (w/w) ammonium trifluoroacetate to the solvent system in either the reversed-phase or polar organic mode (POM). Macrocyclic glycopeptide coupled column technology was initially used to screen all chiral compounds analyzed. Baseline resolution of enantiomers was then achieved with relatively short retention times and high efficiencies on Chirobiotic T, Chirobiotic V or Chirobiotic R narrow bore chiral stationary phases. The polar organic mode offered better limits of detection (as low as 100 pg/ml) and sensitivity over reversed-phase methods. An optimum flow-rate range of 200-400 microl/min was necessary for sensitive chiral LC-ESI-MS analysis.  相似文献   
108.
Heteroleptic copper(I) complexes have been prepared from a macrocyclic ligand incorporating a 2,9‐diphenyl‐1,10‐phenanthroline subunit ( M30 ) and two bis‐phosphines, namely bis[(2‐diphenylphosphino)phenyl] ether (POP) and 1,3‐bis(diphenylphosphino)propane (dppp). In both cases, the diphenylphosphino moieties of the PP ligand are too bulky to pass through the 30‐membered ring of M30 during the coordination process, hence the formation of C2v‐symmetrical pseudo‐rotaxanes is prevented. When POP is used, X‐ray crystal structure analysis shows the formation of a highly distorted [Cu( M30 )(POP)]+ complex in which the POP ligand is only partially threaded through the M30 unit. This compound is poorly stable as the CuI cation is not in a favorable coordination environment due to steric constraints. By contrast, in the case of dppp, the bis‐phosphine ligand undergoes both steric and topological constraints and adopts a nonchelating coordination mode to generate [Cu2( M30 )2(μ‐dppp)](BF4)2. This compound exhibits metal‐to‐ligand charge transfer (MLCT) emission characterized by a very large Stokes’ shift (≈200 nm) that is not attributed to a dramatic structural distortion between the ground and the emitting states but to very weak MLCT absorption transitions at longer wavelengths. Accordingly, [Cu2( M30 )2(μ‐dppp)](BF4)2 shows unusually high luminescence quantum yields for CuI complexes, both in solution and in the solid state (0.5 and 7 %, respectively).  相似文献   
109.
Electrospinning procedures such as blend electrospinning, coaxial electrospinning, and emulsion electrospinning have been used for the fabrication of electrospun nanofibers (ENFs) for biomedical applications. These ENFs are attracted great interest especially in drug delivery applications due to their small size, high surface area-to-volume, and porosity. The aim of this review is to focus on the controlled release mechanism among the different electrospinning methods, and the selectivity of hydrophilic, water-soluble polymers as a carrier for drug. The mechanism for the drug delivery depends mainly on the method of drug loading, polymeric interactions, and the nature of polymer swelling, erosion, or degradation. This review compressed on the literature survey about the fabrication of nanofibers by different electrospinning methods, factors affecting the nanofiber morphologies, selectivity of polymeric blends for successful controlled release behavior, and the mechanism involved in the drug release steps.  相似文献   
110.
Nanofibers of naturally modified polymer such as carboxymethyl cellulose (CMC) blended with poly(vinyl alcohol) (PVA) at different ratios was obtained by electrospinning technique. The blended solutions of CMC and PVA loaded with and without diclofenac sodium (DS) were electrospun using environmentally benign electrospinning technique in the absence of organic solvents. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) were used to investigate the surface morphology functional groups, as well as the thermal stability of DS loaded CMC/PVA nanofibers mat. The mechanical properties of the as prepared electrospun nanofibers was also evaluated. The entrapment efficiency and the in vitro release of DS loaded CMC/PVA nanofibers were characterized using UV-Vis spectroscopy. The obtained results displayed that the blended nanofibers have shown a smooth morphology, no beads formation when the concentration of CMC was equal or below 5% and beads formation above 5%. FTIR data demonstrated that there were good interactions between CMC and PVA possibly via the formation of hydrogen bonds. The electrospun blended CMC/PVA nanofibers exhibit good mechanical properties. From the in vitro release data, it was found that with the presence of CMC, the release of DS from the nanofibers mats became sustained controlled. Due to the biocompatibility and low cost of the two blended polymers (CMC and PVA), the blended nanofibers system can be considered as one of the promising materials for the preparation of excellent drug carrier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号