首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2223篇
  免费   93篇
  国内免费   11篇
化学   1623篇
晶体学   32篇
力学   55篇
数学   125篇
物理学   492篇
  2024年   16篇
  2023年   38篇
  2022年   145篇
  2021年   144篇
  2020年   58篇
  2019年   88篇
  2018年   66篇
  2017年   60篇
  2016年   111篇
  2015年   72篇
  2014年   92篇
  2013年   132篇
  2012年   166篇
  2011年   158篇
  2010年   89篇
  2009年   71篇
  2008年   104篇
  2007年   90篇
  2006年   86篇
  2005年   87篇
  2004年   65篇
  2003年   52篇
  2002年   40篇
  2001年   22篇
  2000年   19篇
  1999年   9篇
  1998年   11篇
  1997年   8篇
  1996年   16篇
  1995年   12篇
  1994年   13篇
  1993年   13篇
  1992年   15篇
  1991年   9篇
  1990年   9篇
  1989年   16篇
  1988年   5篇
  1987年   13篇
  1986年   5篇
  1985年   13篇
  1984年   11篇
  1983年   5篇
  1982年   7篇
  1981年   13篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   6篇
  1971年   4篇
  1968年   4篇
排序方式: 共有2327条查询结果,搜索用时 15 毫秒
81.
The mixing of Ag ion-doped poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAA) produced Ag ion-doped polyelectrolyte complex particles (PECs) in solution. Positively charged Ag ion-doped PECs (Ag ion PECs) with a spherical shape were deposited alternatively with PAA to form a multilayer assembly. The multilayered film containing Ag ion PECs was reduced to generate a composite nanostructure. Metal nanoparticle (NP)-enriched nanocomposite films were formed by an additional process of the postadsorption of precursors on PECs within the nanocomposite films, which resulted in the enhancement of the catalytic and electrical properties of the composite films. Because the films contain PECs that are responsive to changes in pH and most of the NPs are embedded in the PECs, interesting catalytic properties, which are unexpected in a particle-type catalyst, were observed upon pH changes. As a result of the reversible structural changes of the films and the immobilization of the NPs within the films, the film-type catalysts showed enhanced performance and stability during catalytic reactions under various pH conditions, compared to particle-type catalysts.  相似文献   
82.
Chemical reactions in charged nanopores, such as present in cellulose fibers, can be accelerated by adding an inert salt, that does not participate in the reaction. Due to a Donnan-like equilibrium between ions inside and outside the pores, the concentration of co-ions in the nanopores (having a charge of the same sign as that of the pore wall), is lower than the concentration in the bulk. The co-ion concentration in pores can be increased by adding an inert salt, which shifts the Donnan equilibrium. The increased concentration of reactants in pores results in faster reaction kinetics. Reactions of cellulose with periodate confirm these predictions.  相似文献   
83.
Low temperature plasma process is an effective alternative method compared to the conventional vacuum drying method for removing moisture. Plasma drying removes the moisture from fibres faster and to a lower level than conventional methods. It also improves the surface properties of the fibres. The jute fibre was treated with inert gas argon plasma without damaging the fibre. The OES was used to monitor the moisture desorbed from the fibre during processing. The XRD results revealed a change in the macromolecular structure as well as the crystallinity of the treated fibre. The FTIR and TGA provided the evidence of moisture removal from the fibres. It was found that the plasma treated fibres contain less than 1.8% (wt.) moisture which is a promising result when compared with conventional drying processes.The average tensile strength of the plasma treated fibres increased by 12.5% compared with those treated with the conventional vacuum dry process.  相似文献   
84.
Group 16 elements serve as useful bridging and stabilising single atom ligands in mixed-metal carbonyl complexes and impart unusual reactivity on coordinated acetylenic moieties. Reactions of [Fe 3 (CO) 9 3 -E) 2 ] (E = S, or Se) with mononuclear acetylide complexes, [CpM(CO)_3-x(CCR)] (M = Mo or W, x = 0, R = Ph; M = Fe, x = 1, R = Ph or ferrocenyl) under facile conditions yield complexes featuring acetylide coupling, acetylide-flip and formation of oxo and acetylide-bridged complexes. In presence of free acetylenes, unusual ligand systems arising from C─S bond formation are observed and under certain conditions, formation of quinones by coupling of acetylenes with carbon monoxide is facilitated.  相似文献   
85.
A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.  相似文献   
86.
Nanofibers of the composite of pullulan (PULL), poly(vinyl alcohol) (PVA), and montmorillonite clay (MMT) were prepared using electrospinning method in aqueous solutions. Pullulan is an interesting natural polymer for many of its merits and good properties. Because of biocompatibility and non-toxicity of PVA, it could be used in numerous fields. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA) were done to characterize the PULL/PVA/MMT nanofibers morphology and properties. XRD patterns and FTIR data demonstrated that there were good interactions between PULL and PVA caused by possibly hydrogen bonds. Moreover, XRD data and TEM images indicated that intercalated and exfoliated MMT nanoplatelets can be obtained within the PULL/PVA/MMT nanofibers depending on the PULL/PVA blend ratios. Furthermore, the thermal stability and mechanical property (tensile strength) of PULL/PVA/MMT nanofibers could be enhanced more by exfoliated MMT nanoplatelets than intercalated structures of that nanoplatelets.  相似文献   
87.
Melissa officinalis contains various secondary metabolites that have health benefits. Generally, irradiating plants with ultraviolet (UV)-B induces the accumulation of secondary metabolites in plants. To understand the effect of UV-B irradiation on the metabolism of M. officinalis, metabolomics based on gas chromatography-mass spectrometry (GC-MS) was used in this study. The GC-MS analysis revealed 37 identified metabolites from various chemical classes, including alcohols, amino acids, inorganic acids, organic acids, and sugars. The metabolite profiles of the groups of M. officinalis irradiated with UV-B were separated and differentiated according to their irradiation times (i.e., 0, 1, and 2 h), using principal component analysis (PCA) and hierarchical clustering analysis (HCA), respectively. The PCA score plots of PC1 and PC2 showed that the three groups with different irradiation times followed a certain trajectory with increasing UV-B irradiation. HCA revealed that metabolic patterns differed among the three groups, and the 1 h-irradiated group was more similar to the control group (0 h) than the 2 h-irradiated group. In particular, UV-B irradiation of plants led to a decrease in sugars such as fructose, galactose, sucrose, and trehalose and an increase in metabolites in the tricarboxylic acid cycle, the proline-linked pentose phosphate pathway, and the phenylpropanoid pathway. This study demonstrated that metabolite profiling with GC-MS is useful for gaining a holistic understanding of UV-induced changes in plant metabolism.  相似文献   
88.
A simple, fast, repeatable and less laborious sample preparation protocol was developed and applied for the analysis of biocontrol fungus Trichoderma harzianum strain FA1132 by using gas chromatography-mass spectrometry. The match factors for sample spectra with respect to the mass spectra library of fungal volatile compounds were determined and used to study the complex hydrocarbons and other volatile compounds, which were separated by using different capillary columns with nonpolar, medium polar and high polar stationary phases. To date, more than 278 volatile compounds (with spectral match factor at least 90%) such as normal saturated hydrocarbons (C7-C30), cyclohexane, cyclopentane, fatty acids, alcohols, esters, sulfur-containing compounds, simple pyrane and benzene derivatives have been identified. Most of these compounds have not previously been reported. The method described in this paper is a more convenient research tool for the detection of volatile compounds from the cultures of T. harzianum.  相似文献   
89.
A new class of methyleneamine‐linked bis‐heterocycles that exhibit antimicrobial activity was synthesized. Bromination of 1 followed by condensation with thiourea gave 3 . The reaction of 3 with propargyl bromide in dry toluene under inert atmosphere led to the formation of 4 . Its subsequent reaction with different nitrile oxides using CuSO4.5H2O–sodiumascorbate system in a 2:1 mixture of water and tert‐butyl alcohol yielded the title compounds 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j , 6k , 6l in good yields. The identities of these compounds were confirmed following elemental analysis, IR, 1H, 13C NMR, and mass spectral studies. All the title compounds exhibited pronounced in vitro antibacterial and antifungal activities.  相似文献   
90.
Solid state 1H NMR line‐shape analysis and (double quantum) DQ 1H NMR experiments have been used to investigate the segmental and polymer chain dynamics as a function of temperature for a series of thermosetting epoxy resins produced using different diamine curing agents. In these thermosets, chemical crosslinks introduce topological constraints leading to residual stresses during curing. Materials containing a unique ferrocene‐based diamine (FcDA) curing agent were evaluated to address the role of the ferrocene fluxional process on the atomic‐level polymer dynamics. At temperatures above the glass transition temperature (Tg), the DQ 1H NMR experiments provided a measure of the relative effective crosslink and entanglement densities for these materials and revealed significant polymer chain dynamic heterogeneity in the FcDA‐cured thermosets. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1143–1156  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号