首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2362篇
  免费   106篇
  国内免费   17篇
化学   1780篇
晶体学   34篇
力学   75篇
数学   178篇
物理学   418篇
  2024年   17篇
  2023年   36篇
  2022年   179篇
  2021年   154篇
  2020年   72篇
  2019年   94篇
  2018年   81篇
  2017年   79篇
  2016年   127篇
  2015年   89篇
  2014年   98篇
  2013年   147篇
  2012年   197篇
  2011年   193篇
  2010年   99篇
  2009年   79篇
  2008年   102篇
  2007年   101篇
  2006年   100篇
  2005年   92篇
  2004年   72篇
  2003年   62篇
  2002年   45篇
  2001年   12篇
  2000年   9篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   8篇
  1995年   11篇
  1994年   9篇
  1993年   4篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   7篇
  1983年   8篇
  1982年   7篇
  1981年   15篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1970年   3篇
  1935年   1篇
  1934年   1篇
排序方式: 共有2485条查询结果,搜索用时 0 毫秒
81.
With gold and platinum catalysts, cis-4,6-dien-1-yn-3-ols undergo cycloisomerizations that enable structural reorganization of cyclized products chemoselectively. The AuCl3-catalyzed cyclizations of 6-substituted cis-4,6-dien-1-yn-3-ols proceeded via a 6-exo-dig pathway to give allyl cations, which subsequently undergo a pinacol rearrangement to produce reorganized cyclopentenyl aldehyde products. Using chiral alcohol substrates, such cyclizations proceed with reasonable chirality transfer. In the PtCl2-catalyzed cyclization of 7,7-disubstituted cis-4,6-dien-1-yn-3-ols, we obtained exclusively either bicyclo[4.1.0]heptenones or reorganized styrene products with varied substrate structures. On the basis of the chemoselectivity/structure relationship, we propose that bicyclo[4.1.0]heptenone products result from 6-endo-dig cyclization, whereas reorganized styrene products are derived from the 5-exo-dig pathway. This proposed mechanism is supported by theoretic calculations.  相似文献   
82.
This paper describes a simple and convenient strategy for reducing the dimensions of organic micro-and nanostructures on metal surfaces. By varying electrochemical desorption conditions, features patterned by dip-pen nanolithography or micro contact printing and made of linear alkanethiols or selenols can be gradually desorbed in a controlled fashion. The process is referred to as electrochemical whittling because the adsorbate desorption is initiated at the exterior of the feature and moves inward as a function of time. The whittling process and adsorbate desorption were studied as a function of substrate morphology, adsorbate head and tail groups, and electrolyte solvent and salt. Importantly, one can independently address different nanostructures made of different adsorbates and effect their miniaturization based upon ajudicious selection of adsorbate, applied potential, and supporting electrolyte. Some of the physical and chemical origins of these observations have been elucidated.  相似文献   
83.
Selective polymeric extractants were prepared for preconcentration of Cibacron reactive red dye, a dye that is often applied with Cibacron reactive blue and Cibacron reactive yellow for dyeing of fabrics. The best extractant was fabricated (in chloroform) using methacrylic acid (as monomer), ethylene glycol dimethacrylate (as crosslinker), AIBN (as initiator for polymerization), and red dye as template molecule, with a molar stoichiometric ratio of 8.0:40.0:2.5:0.63, respectively. The structure of the molecularly imprinted polymer (MIP) was robust, and resisted dissolution up to 260 °C. Compared with the un-imprinted polymer, the imprinted product has a large specific surface area which improved its adsorption capacity. The effect of imprinting was obvious from the adsorption capacity measured at pH 4 for red dye (the imprinted molecule), which was increased from 24.0 to 79.3 mg g−1 after imprinting. Equilibrium adsorption studies revealed that the dye-imprinted-polymer enables efficient extraction of red dye even in the presence of blue and yellow dyes which have similar chemical natures to the red dye. The selectivity coefficients S red dye/dye, were 13.9 and 17.1 relative to the yellow and blue dyes, respectively. The MIP was found to be effective for red dye preconcentration, with a preconcentration factor of 100, from tap water and treated textile wastewater. The factors affecting extraction of red dye by the MIP were studied and optimized. Under the optimized extraction conditions, red dye was selectively quantified in the presence of other competing dyes at a concentration of 20 μg L−1 from different water systems with satisfactory recoveries (91–95%) and RSD values (∼5.0%).  相似文献   
84.
Polycrystalline samples of PLSZT with the composition Pb0.92−x La0.08Sr x (Zr0.65Ti0.35)O3 (where x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) have been synthesized by sol–gel technique. DTA analysis confirms that all the organic constituents get decomposed and final PLZT is formed at 545 °C. The XRD analysis suggests the formation of single rhombohedral perovskite phase with decreasing unit cell parameter. Crystallite size calculated, using Scherrer’s equation, was found to decrease with Sr doping due to smaller ionic radii of Sr than Pb. Compact uniform grain distribution was observed from SEM micrographs. The ferroelectric to paraelectric phase transition temperature, maximum dielectric constant and remanent polarization (P r) were found to decrease with Sr doping along with increasing diffuse nature of phase transformation. Detailed domain reorientation dynamics study suggests that Sr doping increases the percentage backswitching and decreases the normalized coercivity by decreasing the viscous nature of composition.  相似文献   
85.
The selective enhancement of membrane introduction mass spectrometry for non-polar alkanes, alkenes, and aromatic hydrocarbon compounds by the application of acetonitrile as a chemical ionization reagent was investigated. Acetonitrile Cl is able to produce specific fragment ions for many of the compounds test and this can be used to identify and quantify the parent neutrals. This method provided relatively high detection limits of the test compounds. This method could potentially be useful for analytical applications such as the detection of non-polar hydrocarbons for environmental studies if CH3CN Cl/MIMS is coupled with a preconcentration method.  相似文献   
86.

An environmentally benign method of sample preparation based on dispersive liquid–liquid microextraction and solidification of floating organic droplets (DLLME-SFO) coupled with high-performance liquid chromatography with ultraviolet detection has been developed for analysis of non-steroidal anti-inflammatory drugs (NSAIDs) in biological fluids. A low-toxicity solvent was used to replace the chlorinated solvents commonly used in conventional DLLME. Seven conditions were investigated and optimized: type and volume of extraction solvent and dispersive solvent, extraction time, effect of addition of salt, and sample pH. Under the optimum conditions, good linearity was obtained in the range 0.01–10 µg mL−1, with coefficients of determination (r 2) >0.9949. Detection limits were in the range 0.0034–0.0052 µg mL−1 with good reproducibility (RSD) and satisfactory inter-day and intra-day recovery (95.7–115.6 %). The method was successfully used for analysis of diclofenac, mefenamic acid, and ketoprofen in human urine. Analysis of urine samples from a patient 2 and 4 h after administration of diclofenac revealed concentrations of 1.20 and 0.34 µg mL−1, respectively.

  相似文献   
87.
The pore topology of ITQ-15 zeolite consists of an ultra-large 14-ring channel that is intersected perpendicularly by a 12-ring pore; acid sites have been introduced in its framework and this unique structure shows advantages over unidirectional ultralarge pore zeolites for diffusing and reacting large molecules.  相似文献   
88.
Gram‐negative bacteria are an increasingly serious source of antibiotic‐resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir–Blodgett and Langmuir–Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.  相似文献   
89.
Topochemical transformations of layered materials CaX2 (X=Si, Ge) are the method of choice for the high‐yield synthesis of pristine, defect‐free two‐dimensional systems silicane and germanane, which have advanced electronic properties. Based on solid‐state dispersion‐corrected calculations, mechanisms for such transformations are elucidated that provide an in‐depth understanding of phase transition in these layered materials. While formation of such layered materials is highly favorable for silicane and germanane, a barrier of 1.2 eV in the case of graphane precludes its synthesis from CaC2 topochemically. The energy penalty required for distorting linear acetylene into a trans‐bent geometry accounts for this barrier. In contrast it is highly favorable in the heavier analogues, resulting in barrierless topochemical generation of silicane and germanane. Photochemical generation of the trans‐bent structure of acetylene in its first excited state (S1) can directly generate graphane through a barrierless condensation. Unlike the buckled structure of silicene, the phase‐h of CaSi2 with perfectly planar silicene layers exhibits the Dirac cones at the high symmetry points K and H. Interestingly, topochemical acidification of the cubic phase of calcium carbide is predicted to generate the previously elusive platonic hydrocarbon, tetrahedrane.  相似文献   
90.
Potential genotoxic impurities in pharmaceuticals at trace levels are of increasing concern to both pharmaceutical industries and regulatory agencies due to their possibility for human carcinogenesis. Molecular functional groups that render starting materials and synthetic intermediates as reactive building blocks for small molecules may also be responsible for their genotoxicity. Determination of these genotoxic impurities at trace levels requires highly sensitive and selective analytical methodologies, which poses tremendous challenges on analytical communities in pharmaceutical research and development. Experimental guidance for the analytical determination of some important classes of genotoxic impurities is still unavailable in the literature. Therefore, the present review explores the structural alerts of commonly encountered potential genotoxic impurities, draft guidance of various regulatory authorities in order to control the level of impurities in drug substances and to assess their toxicity. This review also describes the analytical considerations for the determination of potential genotoxic impurities at trace levels and finally few case studies are also discussed for the determination of some important classes of potential genotoxic impurities. It is the authors’ intention to provide a complete strategy that helps analytical scientists for the analysis of such potential genotoxic impurities in pharmaceuticals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号