首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1886篇
  免费   76篇
  国内免费   11篇
化学   1435篇
晶体学   25篇
力学   74篇
数学   121篇
物理学   318篇
  2024年   17篇
  2023年   36篇
  2022年   135篇
  2021年   136篇
  2020年   58篇
  2019年   78篇
  2018年   66篇
  2017年   67篇
  2016年   107篇
  2015年   72篇
  2014年   72篇
  2013年   113篇
  2012年   145篇
  2011年   145篇
  2010年   83篇
  2009年   63篇
  2008年   79篇
  2007年   78篇
  2006年   70篇
  2005年   74篇
  2004年   48篇
  2003年   39篇
  2002年   23篇
  2001年   8篇
  2000年   14篇
  1999年   7篇
  1998年   5篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   7篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1981年   12篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1967年   3篇
排序方式: 共有1973条查询结果,搜索用时 15 毫秒
101.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   
102.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
103.
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.  相似文献   
104.
In recent years, indole derivatives have acquired conspicuous significance due to their wide spectrum of biological activities—antibacterial, antiviral, and anticonvulsant. This compound is derived from naturally grown plants. Therefore, synthesis of a novel “3-(Naphthalen-1-ylimino)indolin-2-one” compound (2) and its analysis using UPLC systems along with antimicrobial assessment was the aim of the current study. Isatin was used as a parent drug for synthesizing compound (2). Liquid Chromatographic analysis was performed using a C18 BEH column (1.7 μm 2.1 × 50 mm) by UPLC systems. Degradation studies were carried out to see whether acid, base, thermal, and oxidizing agents had any impact on the synthesized molecule in stress conditions (100 °C). A lipid-based self-nanoemulsifying formulation was developed and selectivity, specificity, recovery, accuracy, and precision were measured as part of the UPLC system’s validation process. Antimicrobial studies were conducted using gram-positive and gram-negative bacteria. The standard samples were run with a concentration range of 5.0–100.0 μg/mL using the isocratic mobile phase comprising of methanol/water (70/30 %v/v) at 234 nm; good linearity (R2 = 0.9998) was found. The lower limits of detection (LOD) and quantitation (LOQ) of the method were found to be 0.81 μg/mL and 2.5 μg/mL, respectively. The coefficients of variation were found to be less than 2%. The antimicrobial study suggests that compound (2) has a substantial growth effect against gram-negative bacteria. It was successfully synthesized and applied to measure the concentrations in lipid-based dosage form, along with potent antimicrobial activities.  相似文献   
105.
A series of fifteen silver (I) quinoline complexes Q1–Q15 have been synthesized and studied for their biological activities. Q1–Q15 were synthesized from the reactions of quinolinyl Schiff base derivatives L1–L5 (obtained by condensing 2-quinolinecarboxaldehyde with various aniline derivatives) with AgNO3, AgClO4 and AgCF3SO3. Q1–Q15 were characterized by various spectroscopic techniques and the structures of [Ag(L1)2]NO3 Q1, [Ag(L1)2]ClO4 Q6, [Ag(L2)2]ClO4 Q7, [Ag(L2)2]CF3SO3 Q12 and [Ag(L4)2]CF3SO3 Q14 were unequivocally determined by single crystal X-ray diffraction analysis. In vitro antimicrobial tests against Gram-positive and Gram-negative bacteria revealed the influence of structure and anion on the complexes′ moderate to excellent antibacterial activity. In vitro antioxidant activities of the complexes showed their good radical scavenging activity in ferric reducing antioxidant power (FRAP). Complexes with the fluorine substituent or the thiophene or benzothiazole moieties are more potent with IC50 between 0.95 and 2.22 mg/mL than the standard used, ascorbic acid (2.68 mg/mL). The compounds showed a strong binding affinity with calf thymus-DNA via an intercalation mode and protein through a static quenching mechanism. Cytotoxicity activity was examined against three carcinoma cell lines (HELA, MDA-MB231, and SHSY5Y). [Ag(L2)2]ClO4 Q7 with a benzothiazole moiety and [Ag(L4)2]ClO4 Q9 with a methyl substituent had excellent cytotoxicity against HELA cells.  相似文献   
106.
This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.  相似文献   
107.
Cellulose - Textile filaments were fabricated from a solution obtained from carboxymethylated cellulose dissolved in aqueous NaOH solution, by wet spinning in an acid coagulation bath. Spinning is...  相似文献   
108.
Ionics - A mercury(II) sensor was developed by using single-walled carbon nanotube (SWCNT) paste electrode modified with layered double Zn/Al hydroxide-3(4-methoxyphenyl)propionate nanocomposite...  相似文献   
109.
In spite of large spin coherence length in graphene due to small spin–orbit coupling, the created potential barrier and antiferromagnetic coupling at graphene/transition metal (TM) contacts strongly reduce the spin transport behavior in graphene. Keeping these critical issues in mind in the present work, ferromagnetic (Co, Ni) nanosheets are grown on graphene surface to elucidate the nature of interaction at the graphene/ferromagnetic interface to improve the spin transistor characteristics. Temperature dependent magnetoconductance shows unusual behavior exhibiting giant enhancement in magnetoconductance with increasing temperature. A model based on spin–orbit coupling operated at the graphene/TM interface is proposed to explain this anomalous result. We believe that the device performance can be improved remarkably tuning the spin–orbit coupling at the interface of graphene based spin transistor. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
110.
The heating of electrospray ion source under atmospheric pressure is limited to the normal boiling point of the solution. The boiling takes place when the vapor pressure of the liquid at a given temperature equals the ambient pressure. By using a high pressure ESI source, which has been developed previously in our laboratory, a stable electrospray ionization of super-heated aqueous solution is performed up to a solution temperature of 180°C. The ion source is pressurized with pure nitrogen to a maximum pressure of 11 atm, and it is coupled to a commercial mass spectrometer via a custom-made ion transport capillary. A booster pump with variable pumping speed is added to the pumping system to regulate the pressure in the first pumping stage at 1?~?1.3 Torr. High pressure mass spectrometry is performed on several peptides and proteins to demonstrate its application in the temperature-controlled thermally induced denaturation and dissociation. Graphical Abstract
?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号