首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   1篇
  国内免费   2篇
化学   111篇
力学   6篇
数学   53篇
物理学   90篇
  2020年   2篇
  2018年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   12篇
  2012年   13篇
  2011年   10篇
  2010年   4篇
  2009年   5篇
  2008年   11篇
  2007年   16篇
  2006年   14篇
  2005年   25篇
  2004年   14篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   9篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   8篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有260条查询结果,搜索用时 0 毫秒
91.
Numerous types of carbon nanostructure have been found experimentally, including nanotubes, fullerenes and nanocones. These structures have applications in various nanoscale devices and the joining of these structures may lead to further new configurations with more remarkable properties and applications. The join profile between different carbon nanostructures in a symmetric configuration may be modelled using the calculus of variations. In previous studies, carbon nanostructures were assumed to deform according to perfect elasticity, thus the elastic energy, depending only on the axial curvature, was used to determine the join profile consisting of a finite number of discrete bonds. However, one could argue that the relevant energy should also involve the rotational curvature, especially when its size is comparable to the axial curvature. In this paper, we use the Willmore energy, a natural generalisation of the elastic energy that depends on both the axial and rotational curvatures. Catenoids are absolute minimisers of this energy and pieces of these may be used to join various nanostructures. We focus on the cases of joining a fullerene to a nanotube and joining two fullerenes along a common axis. By comparing our results with the earlier work, we find that both energies give similar joining profiles. Further work on other configurations may reveal which energy provides a better model.  相似文献   
92.
F.Y. Wu  B.M. McCoy  L. Chayes 《哲学杂志》2013,93(26):3093-3095
In a recent paper published in Philosophical Magazine [Z.-D. Zhang, Phil. Mag. 87 (2007) p.5309], the author advances a conjectured solution for various properties of the three-dimensional Ising model. Here, we disprove the conjecture and point out the flaws in the arguments leading to the conjectured expressions.  相似文献   
93.
94.
95.
Cluster distribution kinetics is adopted to explore the kinetics of polymer crystallization. Population balance equations based on crystal size distribution and concentration of amorphous polymer segments are solved numerically and the related dynamic moment equations are also solved. The model accounts for heterogeneous or homogeneous nucleation and crystal growth. Homogeneous nucleation rates follow the classical surface-energy nucleation theory. Different mass dependences of growth and dissociation rate coefficients are proposed to investigate the fundamental features of nucleation and crystal growth. A comparison of moment solutions with numerical solutions examines the validity of the model. The proposed distribution kinetics model provides a different interpretation of the familiar Avrami equation.  相似文献   
96.
Predissociation spectra of the H(5)O(2) (+)RG(n)(RG = Ar,Ne) cluster ions are reported in energy regions corresponding to both the OH stretching (3350-3850 cm(-1)) and shared proton (850-1950 cm(-1)) vibrations. The two free OH stretching bands displayed by the Ne complex are quite close to the band origins identified earlier in bare H(5)O(2) (+) [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)], indicating that the symmetrical H(5)O(2) (+) "Zundel" ion remains largely intact in H(5)O(2) (+)Ne. The low-energy spectrum of the Ne complex is simpler than that observed previously for H(5)O(2) (+)Ar, and is dominated by two sharp transitions at 928 and 1047 cm(-1), with a weaker feature at 1763 cm(-1). The H(5)O(2) (+)Ar(n),n = 1-5 spectra generally exhibit complex band structures reflecting solvent-induced symmetry breaking of the Zundel core ion. The extent of solvent perturbation is evaluated with electronic structure calculations, which predict that the rare gas atoms should attach to the spectator OH groups of H(5)O(2) (+) rather than to the shared proton. In the asymmetric complexes, the shared proton resides closer to the more heavily solvated water molecule, leading to redshifts in the rare gas atom-solvated OH stretches and to blueshifts in the shared proton vibrations. The experimental spectra are compared with recent full-dimensional vibrational calculations (diffusion Monte Carlo and multimode/vibrational configuration interaction) on H(5)O(2) (+). These results are consistent with assignment of the strong low-energy bands in the H(5)O(2) (+)Ne spectrum to the vibration of the shared proton mostly along the O-O axis, with the 1763 cm(-1) band traced primarily to the out-of-phase, intramolecular bending vibrations of the two water molecules.  相似文献   
97.
A two-dimensional lattice-Boltzmann model (LBM) with fluid-fluid interactions was used to simulate first-order phase separation in a thin fluid film. The intermediate asymptotic time dependence of the mean island size, island number concentration, and polydispersity were determined and compared with the predictions of the distribution-kinetics model. The comparison revealed that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations. However, the overall process is dominated by coalescence, which is independent of island mass. As the phase transition advances, the mean island size increases, the number of islands decrease, and the polydispersity approaches unity, which conforms to the predictions of the distribution-kinetics model. The effects of the domain size on the intermediate asymptotic island size distribution, scaling form of the island size distribution, and the crossover to the long-term asymptotic behavior were elucidated.  相似文献   
98.
99.
Laser-induced fluorescence and action spectroscopy experiments have identified multiple conformers of the D2...ICl van der Waals complex for both ortho-D2 (o-D2) and para-D2 (p-D2). As with the analogous H2...ICl van der Waals complexes [Darr, J. P.; Crowther, A. C.; Loomis, R. A.; Ray, S. E.; McCoy, A. B. J. Phys. Chem. A 2007, 111, 13387], the C2v conformer with the deuterium molecule localized at the iodine atom end of the dihalogen is significantly more stable than the asymmetric conformer that has the deuterium positioned orthogonally to the ICl bond axis, D0' = 223.9(2.4) versus 97.3(8)-103.9(3) cm(-1) for p-D2...I(35)Cl(X, v'=0). For both conformers, complexes containing p-D2 are found to be more strongly bound than those with o-D2. The electronically excited D2...ICl(A, v') and D2...ICl(B, v') complexes are found to have equilibrium geometries that are nearly the same as those of the ground-state asymmetric structures. Calculated D2...ICl(B, v'=3) energies and probability amplitudes obtained using a simple scaled He + ICl(B, v'=3) potential provide clues to the nature of the different excited-state levels accessed.  相似文献   
100.
Recently, we reported the spectrum of Ar x D4HO2(+) [McCunn; et, al. J. Phys. Chem. B 2008, 112, 321], and here, we extend that work to include the Ar x H4DO2(+) isotopologue in order to explore why the Ar atom has a much greater propensity for attachment to a dangling OD group than it does for OH, even when many more of the latter binding sites are available. Calculated (MP2/6-311+G(d,p) level of theory/basis) harmonic frequencies reproduce the observed multiplet patterns of OH and OD stretches and confirm the presence of various isomers arising from the different Ar binding sites. The preferential bonding of Ar to OD is traced to changes in the frequencies of the wag and rock modes of the H5O2(+) moiety rather than to shifts in the oscillator that directly binds the Ar atom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号