首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   1篇
化学   52篇
数学   1篇
物理学   7篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
排序方式: 共有60条查询结果,搜索用时 0 毫秒
11.
A new type of biosensor based on the coupling of an enzyme to an ion-selective membrane containing a conducting polymer is evaluated. The results obtained with the enzyme field- effect transistor (ENFET) and the ion-selective electrode (ISE) for the determination of creatinine and urea are compared. The presence of the conducting polymer significantly lowers the detection limit for creatinine by one decade to 10?7 and 10?4 M for the ENFET and ISE, respectively. The determination of urea in urine and serum with the ENFET was carried out, and the results correlated well with those obtained by spectrophotometry.  相似文献   
12.
One of the main drawbacks affecting first‐generation electrochemical biosensors in the analysis of real matrices is the interference of electroactive species present in the sample under investigation. Several approaches have been attempted to overcome this problem in the past ten years but the best results were achieved by using mediated based electrochemical biosensors. Despite this, the kinetic of the redox mediators‐enzymatic proteins interaction has not been studied deeply enough. In this work we have developed a theoretical‐methodological approach for the characterization of the kinetic of interaction between redox enzymes and substrates and/or redox mediators. Particularly, the interaction of glucose oxidase (GOx) with several commercially available redox mediators has been studied by means of amperometry and cyclic voltammetry. The main kinetic parameters for different mediators were exploited and discussed with the aim of finding the best mediator for a glucose biosensor to be used on real samples.  相似文献   
13.
The crystall and molecular structures of (ClAlN-i-Pr)6 (I), and of (Me0.83H0.17AlN-i-Pr)6(MeAlN-i-Pr)6 have been determined by single crystal three-dimensional X-ray analysis. Block-matrix least-squares refinements led to conventional R factor of 0.039 for I and 0.037 for II. The compounds are isostructural, as the cage molecules consist of a prismatic hexagonal framework, (AlN)6, similar to that observed for the parent hydrogenated analogue (HAlN-i-Pr)6.Some differences in bond distances and angles are discussed, in connection with the different Al-bonded substituents. Crystal data: I, trigonal space group R3; a = 17.083(2), c = 9.652(1); Z = 3; Dc 1.46 g cm?3; II, trigonal space group R3, a = 17.378(3), c = 9.706(3) »; Z = 3; Dc 1.15 g cm?3.  相似文献   
14.
Computational Fluid Dynamics is a fundamental tool to simulate the flow field and the multi-physics nature of the phenomena involved in gas turbine combustors, supporting their design since the very preliminary phases. Standard steady state RANS turbulence models provide a reasonable prediction, despite some well-known limitations in reproducing the turbulent mixing in highly unsteady flows. Their affordable cost is ideal in the preliminary design steps, whereas, in the detailed phase of the design process, turbulence scale-resolving methods (such as LES or similar approaches) can be preferred to significantly improve the accuracy. Despite that, in dealing with multi-physics and multi-scale problems, as for Conjugate Heat Transfer (CHT) in presence of radiation, transient approaches are not always affordable and appropriate numerical treatments are necessary to properly account for the huge range of characteristics scales in space and time that occur when turbulence is resolved and heat conduction is simulated contextually. The present work describes an innovative methodology to perform CHT simulations accounting for multi-physics and multi-scale problems. Such methodology, named U-THERM3D, is applied for the metal temperature prediction of an annular aeroengine lean burn combustor. The theoretical formulations of the tool are described, together with its numerical implementation in the commercial CFD code ANSYS Fluent. The proposed approach is based on a time de-synchronization of the involved time dependent physics permitting to significantly speed up the calculation with respect to fully coupled strategy, preserving at the same time the effect of unsteady heat transfer on the final time averaged predicted metal temperature. The results of some preliminary assessment tests of its consistency and accuracy are reported before showing its exploitation on the real combustor. The results are compared against steady-state calculations and experimental data obtained by full annular tests at real scale conditions. The work confirms the importance of high-fidelity CFD approaches for the aerothermal prediction of liner metal temperature.  相似文献   
15.
Self-assembled monolayers (SAMs) provide a convenient, flexible and simple system to tailor the interfacial properties of metals, metal oxides and semiconductors. Monomolecular films prepared by self-assembly are attractive for several exciting applications because of the unique possibility of making the selection of different types of terminal functional groups and as emerging tools for nanoscale observation of biological interactions. The tenability of SAMs as platforms for preparing biosurfaces is reviewed and critically discussed. The different immobilization approaches used for anchoring proteins to SAMs are considered as well as the nature of SAMs; particular emphasis is placed on the chemical specificity of protein attachment in view of preserving protein native structure necessary for its functionality. Regarding this aspect, particular attention is devoted to the relation between the immobilization process and the electrochemical response (i.e. electron transfer) of redox proteins, a field where SAMs have attracted remarkable attention as model systems for the design of electronic devices. Strategies for creating protein patterns on SAMs are also outlined, with an outlook on promising and challenging future directions for protein biochip research and applications.  相似文献   
16.
Reactivities of 2-amino-4H-pyrido[1,2-a]pyrimidin-4-ones and 4-amino-2H-pyrido[1,2-a]pyrimidin-2-ones, both N,N-dialkyl and (N-alkyl, N-phenyl)substituted, when treated with the N,N-dimethylformamide/phosphorus oxychloride Vilsmeier-Haack reagent XII were compared. Starting from 2-[(N-alkyl, N-phenyl)amino] compounds IXa,b , the expected XVIa,b and XVIIa,b were obtained, which are derivatives of 12H-pyrido[1′,2′:1,2]pyrimido[4,5-b]quinoline, a novel heterocyclic system. When 2-(phenylamino) compound IXc was used a mixture of 3-formylderivative XVIII and 12H-pyrido-[1′,2′:1,2]pyrimido[4,5-b]quinolin-12-one ( XIX ) resulted from the reaction. On the other hand, 2-(dialkylamino)-4H-pyrido[1,2-a]pyrimidin-4-ones IIIa-c plainly afforded high yields of 3-formylderivatives XIVa-c. In contrast, no significant reaction occurred when 4-(dialkylamino) and 4-[(N-alkyl,N-phenyl)amino] compounds IIa-c and VIIIa,b were treated with the reagent XII , under the same as well as more severe conditions. A clear difference in the nucleophilic reactivity of C-3 position between these two classes of isomers is pointed out by the above summarized results.  相似文献   
17.
This work aims at understanding the attachment mechanisms and stability of proteins on a chromatography medium to develop more efficient functionalization methodologies, which can be exploited in affinity chromatography. In particular, the study was focused on the understanding of the attachment mechanisms of bovine serum albumin (BSA), used as a ligand model, and protein G on novel amine-modified alumina monoliths as a stationary phase. Protein G was used to develop a column for antibody purification. The results showed that, at lower protein concentrations (i.e., 0.5 to 1.0 mg·mL−1), protein attachment follows a 1st-order kinetics compatible with the presence of covalent binding between the monolith and the protein. At higher protein concentrations (i.e., up to 10 mg·mL−1), the data preferably fit a 2nd-order kinetics. Such a change reflects a different mechanism in the protein attachment which, at higher concentrations, seems to be governed by physical adsorption resulting in a multilayered protein formation, due to the presence of ligand aggregates. The threshold condition for the prevalence of physical adsorption of BSA was found at a concentration higher than 1.0 mg·mL−1. Based on this result, protein concentrations of 0.7 and 1.0 mg·mL−1 were used for the functionalization of monoliths with protein G, allowing a maximum attachment of 1.43 mg of protein G/g of monolith. This column was then used for IgG binding–elution experiments, which resulted in an antibody attachment of 73.5% and, subsequently, elution of 86%, in acidic conditions. This proved the potential of the amine-functionalized monoliths for application in affinity chromatography.  相似文献   
18.
19.
We followed the reactivity of acetone with 3‐aminopropyltrimethoxysilane, a potential organosilane coupling agent, by 1H, 13C and 29Si NMR spectroscopy. Selective 1D and 2D‐edited NMR experiments significantly contributed to simplify the spectral complexity of reaction solution and elucidated molecular structures within progressive reaction phases. The course of the 3‐aminopropyltrimethoxysilane reaction with acetone was shown by a progressive decrease of both reactants, and a concomitant appearance of water and methanol, due to formation of imine and hydrolysis of alkoxysilane groups, respectively. The occurrence of multiple siloxane linkages in a progressively larger cross‐linked macromolecular structure was revealed by DOSY‐NMR experiments and new signals in 29Si‐NMR spectra at different reaction times. The NMR approach described here may be applied to investigate the reactivity of other γ‐aminopropylalkoxysilanes and contribute to define procedures for the preparation of silica‐based materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
20.
The family Guttiferae belongs to the superorder Theiflorae, order Theales and according to Dahlgren's system of classification, it is equivalent to Hypericaceae (=Clusiaceae) [1]. This family consists of 49 genera encompassing over 1000 species of wide distribution in the tropics as shrubs and trees [2]. Plants of the genus Clusia have been used in folk medicine for the treatment of different kind of illness such as: febrifuge, anti rheumatic, purgative, for stomach problems and, in Brazil, they are very commonly used to heal wounds [3]. The key of any study of material from natural sources is the availability of suitable separation methods for the isolation of pure products [4–6]. Tentatives for separations using chomatography on solid support phases were not very efficients in the fractionation of Clusia criuva Cambess methanolic/ethyl acetate extracts. However, the use of counter-current chromatography, an all liquid technique, showed advantages in comparison with the more traditional liquid-solid separation methods and even with HPLC. In this sense it was possible to isolate flavonoid glycosides from ethyl acetate extract of Clusia criuva, in a very short operation time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号