首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   17篇
化学   326篇
晶体学   1篇
力学   2篇
数学   50篇
物理学   45篇
  2024年   2篇
  2023年   4篇
  2022年   13篇
  2021年   13篇
  2020年   17篇
  2019年   13篇
  2018年   8篇
  2017年   4篇
  2016年   15篇
  2015年   10篇
  2014年   14篇
  2013年   25篇
  2012年   28篇
  2011年   37篇
  2010年   13篇
  2009年   16篇
  2008年   32篇
  2007年   24篇
  2006年   24篇
  2005年   28篇
  2004年   21篇
  2003年   16篇
  2002年   12篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   3篇
  1973年   2篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
71.
The essential oil component α-pinene has multiple biological activities. However, its application is limited owing to its volatility, low aqueous solubility, and chemical instability. For the aim of improving its physicochemical properties, α-pinene was encapsulated in conventional liposomes (CLs) and drug-in-cyclodextrin-in-liposomes (DCLs). Hydroxypropyl-β-cyclodextrin/α-pinene (HP-β-CD/α-pinene) inclusion complexes were prepared in aqueous solution, and the optimal solubilization of α-pinene occurred at HP-β-CD:α-pinene molar ratio of 7.5:1. The ethanol-injection method was applied to produce different formulations using saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids in combination with cholesterol. The size, the phospholipid and cholesterol incorporation rates, the encapsulation efficiency (EE), and the loading rate (LR) of α-pinene were determined, and the storage stability of liposomes was assessed. The results showed that α-pinene was efficiently entrapped in CLs and DCLs with high EE values. Moreover, Lipoid S100 CLs displayed the highest LR (22.9 ± 2.2%) of α-pinene compared to the other formulations. Both carrier systems HP-β-CD/α-pinene inclusion complex and Lipoid S100 CLs presented a gradual release of α-pinene. Furthermore, the DPPH radical scavenging activity of α-pinene was maintained upon encapsulation in Lipoid S100 CLs. Finally, it was found that all formulations were stable after three months of storage at 4 °C.  相似文献   
72.
73.
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space discretization we use the finite element method and utilize the two-by-two block structure of the matrices in the arising algebraic systems of equations. The Krylov subspace iterative methods are chosen to solve the linearized discrete systems and the development of computationally and numerically efficient preconditioners for the two-by-two block matrices is the main concern in this paper. In non-Newtonian flows, the viscosity is not constant and its variation is an important factor that affects the performance of some already known preconditioning techniques. In this paper we examine the performance of several preconditioners for variable viscosity applications, and improve them further to be robust with respect to variations in viscosity.  相似文献   
74.
Experimental and theoretical studies on equilibria between iridium hydride alkylidene structures, [(TpMe2)Ir(H){?C(CH2R)ArO }] (TpMe2=hydrotris(3,5‐dimethylpyrazolyl)borate; R=H, Me; Ar=substituted C6H4 group), and their corresponding hydride olefin isomers, [(TpMe2)Ir(H){R(H)C? C(H)OAr}], have been carried out. Compounds of these types are obtained either by reaction of the unsaturated fragment [(TpMe2)Ir(C6H5)2] with o‐C6H4(OH)CH2R, or with the substituted anisoles 2,6‐Me2C6H3OMe, 2,4,6‐Me3C6H2OMe, and 4‐Br‐2,6‐Me2C6H2OMe. The reactions with the substituted anisoles require not only multiple C? H bond activation but also cleavage of the Me? OAr bond and the reversible formation of a C? C bond (as revealed by 13C labeling studies). Equilibria between the two tautomeric structures of these complexes were achieved by prolonged heating at temperatures between 100 and 140 °C, with interconversion of isomeric complexes requiring inversion of the metal configuration, as well as the expected migratory insertion and hydrogen‐elimination reactions. This proposal is supported by a detailed computational exploration of the mechanism at the quantum mechanics (QM) level in the real system. For all compounds investigated, the equilibria favor the alkylidene structure over the olefinic isomer by a factor of between approximately 1 and 25. Calculations demonstrate that the main reason for this preference is the strong Ir–carbene interactions in the carbene isomers, rather than steric destabilization of the olefinic tautomers.  相似文献   
75.

Abstract  

4-Ureidophthalimide or ureido isoindolin-1-one based ligands were shown by NMR spectroscopy and theoretical studies to bind the CG base pairs in the major groove. To examine this hydrogen-bonded complex, we cocrystallized 5-fluorocytosine, 9-methylguanine and 1-(2-methyl-3-oxoisoindolin-5-yl)urea. Two polymorphs of the latter compound were obtained during the cocrystallization attempts. Both crystallized in monoclinic space groups: form Ia in P21/c with cell parameters of a = 11.382(2), b = 6.042(1), c = 14.102(2) ? and β = 96.51(1)°, and form Ib in P21/n with cell parameters of a = 7.092(1), b = 11.643(2), c = 11.580(2) ? and β = 93.48(1)°. An identical molecular conformation of the two polymorphs is observed. Both polymorphs have an R 22(8) N–H···O interaction linking the urea fragments of two molecules to a centrosymmetric dimer. Nevertheless, the crystal packing for both forms is completely different. In Ia, two dimers are connected by two R 21(6) N–H···O bonds simultaneously to a shifted ribbon motif, whereas in Ib the two R 21(6) interactions link two molecules from two different dimers.  相似文献   
76.
Label-free and reagentless aptamer-based sensors for small molecules   总被引:1,自引:0,他引:1  
A label free, reagentless aptasensor for adenosine is developed on an ISFET device. The separation of an aptamer/nucleic acid duplex by adenosine leads to the aptamer/adenosine complex that alters the gate potential of the ISFET. The sensitivity limit of the device is 5 x 10-5 M. Also, the immobilization of the aptamer/nucleic acid duplex on an Au-electrode and the separation of the duplex by adenosine mono-phosphate (AMP) enable the electrochemical detection of adenosine by faradaic impedance spectroscopy. The separation of the aptamer/nucleic acid duplex by adenosine and the formation of the aptamer/adenosine complex results in a decrease in the interfacial electron-transfer resistance in the presence of [Fe(CN)6]3-/4- as redox active substrate.  相似文献   
77.
78.
The efficient, regioselective synthesis of functionalized/annulated quinolines was achieved by the coupling of 2‐aminoaryl ketones with alkynes/active methylenes/α‐oxoketene dithioacetals promoted by InCl3 in refluxing acetonitrile as well as under solvent‐free conditions in excellent yields. This transformation presumably proceeded through the hydroamination–hydroarylation of alkynes, and the Friedländer annulation of active methylene compounds and α‐oxoketene dithioacetals with 2‐aminoarylketones. In addition, simple reductive and oxidative cyclization of 2‐nitrobenzaldehyde and 2‐aminobenzylalcohol, respectively, afforded substituted quinolines. Systematic optimization of the reaction parameters allowed us to identify two‐component coupling (2CC) conditions that were tolerant of a wide range of functional groups, thereby providing densely functionalized/annulated quinolines. This approach tolerates the synthesis of various bioactive quinoline frameworks from the same 2‐aminoarylketones under mild conditions, thus making this strategy highly useful in diversity‐oriented synthesis (DOS). The scope and limitations of the alkyne‐, activated methylene‐, and α‐oxoketene dithioacetal components on the reaction were also investigated.  相似文献   
79.
The double C? H bond activation of a series of linear and cyclic ethers by the iridium complex [Tptol′Ir(C6H5)(N2)] ( 2? N2), which features a cyclometalated hydrotris(3‐p‐tolylpyrazol‐1‐yl)borate ligand (Tptol′) coordinated in a κ4N,N′,N′′,C manner, has been studied. Two methyl ethers, namely, Me2O and MeOtBu, along with diethyl ether and the cyclic ethers tetrahydrofuran, tetrahydropyran (THP), and 1,4‐dioxane have been investigated with formation in every case of the corresponding hydride carbene complexes 3 – 8 , which are stabilized by κ4‐coordination of the ancillary Tptol′ ligand. Five of the compounds have been structurally authenticated by X‐ray crystallography. A remarkable feature of these rearrangements is the reversibility of the double C? H bond activation of Me2O, MeOtBu, Et2O, and THP. This has permitted catalytic deuterium incorporation into the methyl groups of the two methyl ethers, although in a rather inefficient manner (for synthetic purposes). Although possible in all cases, C? C coupling by migratory insertion of the carbene into the Ir? C σ bond of the metalated linkage has only been observed for complex 8 that contains a cyclic carbene that results from α,α‐C? H activation of 1,4‐dioxane. Computational studies on the formation of iridium carbenes are also reported, which show a role for metalated Tp ligands in the double C? H activation and account for the reversibility of the reaction in terms of the relative stability of the reagents and the products of the reaction.  相似文献   
80.
Different tautomeric and zwitterionic forms of chelidamic acid (4‐hydroxypyridine‐2,6‐dicarboxylic acid) are present in the crystal structures of chelidamic acid methanol monosolvate, C7H5NO5·CH4O, (Ia), dimethylammonium chelidamate (dimethylammonium 6‐carboxy‐4‐hydroxypyridine‐2‐carboxylate), C2H8N+·C7H4NO5, (Ib), and chelidamic acid dimethyl sulfoxide monosolvate, C7H5NO5·C2H6OS, (Ic). While the zwitterionic pyridinium carboxylate in (Ia) can be explained from the pKa values, a (partially) deprotonated hydroxy group in the presence of a neutral carboxy group, as observed in (Ib) and (Ic), is unexpected. In (Ib), there are two formula units in the asymmetric unit with the chelidamic acid entities connected by a symmetric O—H...O hydrogen bond. Also, crystals of chelidamic acid dimethyl ester (dimethyl 4‐hydroxypyridine‐2,6‐dicarboxylate) were obtained as a monohydrate, C9H9NO5·H2O, (IIa), and as a solvent‐free modification, in which both ester molecules adopt the hydroxypyridine form. In (IIa), the solvent water molecule stabilizes the synperiplanar conformation of both carbonyl O atoms with respect to the pyridine N atom by two O—H...O hydrogen bonds, whereas an antiperiplanar arrangement is observed in the water‐free structure. A database study and ab initio energy calculations help to compare the stabilities of the various ester conformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号