首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  国内免费   1篇
化学   63篇
力学   2篇
数学   5篇
物理学   8篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  1999年   2篇
排序方式: 共有78条查询结果,搜索用时 31 毫秒
31.
Methane photolysis has been performed at the two Vacuum UltraViolet (VUV) wavelengths, 121.6 nm and 118.2 nm, via a spectrally pure laser pump-probe technique. The first photon is used to dissociate methane (either at 121.6 nm or at 118.2 nm) and the second one is used to ionise the CH(2) and CH(3) fragments. The radical products, CH(3)(X), CH(2)(X), CH(2)(a) and C((1)D), have been selectively probed by mass spectrometry. In order to quantify the fragment quantum yields from the mass spectra, the photoionisation cross sections have been carefully evaluated for the CH(2) and CH(3) radicals, in two steps: first, theoretical ab initio approaches have been used in order to determine the pure electronic photoionisation cross sections of CH(2)(X) and CH(2)(a), and have been rescaled with respect to the measured absolute photoionisation cross section of the CH(3)(X) radical. In a second step, in order to take into account the substantial vibrational energy deposited in the CH(3)(X) and CH(2)(a) radicals, the variation of their cross sections near threshold has been simulated by introducing the pertinent Franck-Condon overlaps between neutral and cation species. By adding the interpolated values of CH quantum yields measured by Rebbert and Ausloos [J. Photochem., 1972, 1, 171-176], a complete set of fragment quantum yields has been derived for the methane photodissociation at 121.6 nm, with carefully evaluated 1σ uncertainties: Φ[CH(3)(X)] = 0.42 ± 0.05, Φ[CH(2)(a)] = 0.48 ± 0.05, Φ[CH(2)(X)] = 0.03 ± 0.08, Φ[CH(X)] = 0.07 ± 0.01. These new data have been measured independently of the H atom fragment quantum yield, subject to many controversies in the literature. From our results, we evaluate Φ(H) = 0.55 ± 0.17 at 121.6 nm. The quantum yields for the photolysis at 118.2 nm differ notably from those measured at 121.6 nm, with a substantial production of the CH(2)(X) fragment: Φ[CH(3)(X)] = 0.26 ± 0.04, Φ[CH(2)(a)] = 0.17 ± 0.05, Φ[CH(2)(X)] = 0.48 ± 0.06, Φ[CH(X)] = 0.09 ± 0.01, Φ(H) = 1.31 ± 0.13. These new data should bring reliable and essential inputs for the photochemical models of the Titan atmosphere.  相似文献   
32.
Ligand-stabilized gold nanoparticles (Au NPs) are promising materials for nanotechnology with applications in electronics, catalysis, and sensors. These applications depend on the ability to synthesize stable and monodisperse NPs. Herein, the design and synthesis of two series of dendritic thioether ligands and their ability to stabilize Au NPs is presented. The dendrimers have 1,3,5-trisubstituted benzene branching units bridged by either meta-xylene or ethylene moieties. A comparison between the two ligands shows how both size control and the stability of the NPs are influenced by the nature of the ligand-NP wrapping interaction. The meta-xylene-bridged ligands provided NPs with a narrow size distribution centered around a diameter of 1.2 nm, whereas the NPs formed with ethylene-bridged dendrimers lack long-term stability with NP aggregation detected by UV/Vis spectroscopy and transmission electron microscopy. The bulkier tert-butyl-functionalized meta-xylene bridges form larger ligand shells that inhibit further growth of the NPs and thus provide a simple route to stable and monodisperse Au NPs that may find use as functional components in nanoelectronic devices.  相似文献   
33.
34.
Re oxo alkylidene surface species are putative active sites in classical heterogeneous Re‐based alkene‐metathesis catalysts. However, the lack of evidence for such species questions their existence and/or relevance as reaction intermediates. Using Re(O)(=CH‐CH=CPh2)(OtBuF6)3(THF), the corresponding well‐defined Re oxo alkylidene surface species can be generated on both silica and silica–alumina supports. While inactive on the silica support, it displays very good activity, even for functionalized olefins, on the silica–alumina support.  相似文献   
35.
Quasi-ternary cyanamides and carbodiimides of general formula AB(NCN)(3) with A not equal B have neither been predicted nor synthesized. Thus, hypothetical compounds of that kind containing 3d transition metals were considered (A = Ti, B = Mn, Fe, Co, Ni, Cu) by means of density-functional calculations on 34 structural models, most of which were derived from chemically related phases. After performing structure optimizations based on the local-density approximation, the relative energetic orderings are rationalized in terms of geometrical factors such as molar volumes and polyhedral connections. Total-energy generalized-gradient calculations evidence that the most stable models are enthalpically favored with respect to the elements. Even at ambient temperatures, the ternary phases are predicted as being thermodynamically stable in terms of their Gibbs free formation energies, especially if energetically competing and low-lying binaries (TiC, TiN) can be excluded by a kinetic reaction control. The best models are characterized by low-spin magnetic transition metals found in octahedral coordination, and the TiN(6) and MN(6) polyhedra either share faces or edges.  相似文献   
36.
In recent years, various protocols on preparing Lewis acidic Sn‐β zeolite hydrothermally and postsynthetically have been reported. However, very little is known about the effects of different synthesis protocols on the Sn(IV) speciation in the final material. Even the effects of individual synthesis parameters within a certain preparation method have not been studied systematically. Here, we demonstrate that hydrothermally synthesized Sn‐β zeolites prepared via very similar recipes show significantly different 119Sn‐NMR spectra, suggesting different Sn site speciation. Among postsynthetically prepared Sn‐β zeolites, less variation in the resulting 119Sn‐NMR spectra have been observed, indicating a more reproducible synthesis procedure compared to hydrothermal synthesis in fluoride media. This work highlights the importance of 119Sn‐NMR measurements to elucidate the precise local geometry of the Sn heteroatoms in Sn‐β, and the need to quantify the number of reactive Sn sites on each sample that participate in a given catalytic reaction, in order to accurately compare materials prepared by different routes.  相似文献   
37.
Molecular mass spectrometry (MS) analysis of protein phosphorylation is partially limited by the molecular specie specificity of the analytical responses that might impair both qualitative and quantitative performances. Elemental MS, such as inductively coupled plasma mass spectrometry (ICP-MS) can overcome these drawbacks; in fact, analytical performance is theoretically independent of the molecular structure of a target analyte naturally containing the elements of interest. Nevertheless, isobaric interferences derived from sample matrix and laboratory environment can hinder the quantitative determination of both phosphorus (P) and sulfur (S) as 31P+ and 32S+ by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) under standard plasma conditions. These interferences may be overcome by quantifying P and S as oxide ions 31P16O+ and 32S16O+, respectively.In this study, we present a systematic investigation on the effect of plasma instrumental conditions on the oxide ion responses by a design of experiment approach for the simultaneous ICP-QMS determination of P and S (31P16O+ and 32S16O+, respectively) in protein samples without the use of dynamic reaction, collision reaction cells or pre-addition of oxygen as reactant gas in the torch. The proposed method was evaluated in terms of limit of detection, limit of quantification, linearity, repeatability, and trueness. Moreover, detection and quantification capabilities of the optimized method were compared to the standard plasma mode for determination of 31P+ and 34S+. Spectral and non-spectral interferences affecting the quantification of 31P+, 31P16O+ and 32S16O+ were also studied. The suitability of inorganic elemental standards for P and S quantification in proteins was assessed. The method was applied to quantify the phosphorylation stoichiometry of commercially available caseins (bovine β-casein, native and dephosphorylated α-casein) and results were confirmed by Matrix Assisted Laser Desorption Ionization Time of Flight MS analysis.We demonstrate that ICP-QMS, by quantifying P and S as oxide ions, was able to accurately calculate the degree of phosphorylation of β-casein and α-casein and to detect specific partial enzymatic dephosphorylation. The collected results might lead to further development of ICP-QMS interfaces optimized for protein phosphorylation studies and for proteomics investigations.  相似文献   
38.
The assembly of dumbbell structures as organic-inorganic hybrid materials is presented. Gold nanoparticles (NPs) with a mean diameter of 1.3 nm were synthesized in very good yields using a stabilizing dendrimer based on benzylic thioether subunits. The extended dendritic ligand covers the NP surface and contains a peripheral protected acetylene, providing coated and monofunctionalized NPs. These NPs themselves can be considered as large molecules, and thus, applying a wet-chemical deprotection/oxidative acetylene coupling protocol exclusively provides dimers of NPs interlinked by a diethynyl bridge. The concept not only enables access to novel organic/inorganic hybrid architectures but also promises new approaches in labeling technology.  相似文献   
39.
MALDI imaging and profiling mass spectrometry of proteins typically leads to the detection of a large number of peptides and small proteins but is much less successful for larger proteins: most ion signals correspond to proteins of m/z < 25,000. This is a severe limitation as many proteins, including cytokines, growth factors, enzymes, and receptors have molecular weights exceeding 25 kDa. The detector technology typically used for protein imaging, a microchannel plate, is not well suited to the detection of high m/z ions and is prone to detector saturation when analyzing complex mixtures. Here we report increased sensitivity for higher mass proteins by using the CovalX high mass HM1 detector (Zurich, Switzerland), which has been specifically designed for the detection of high mass ions and which is much less prone to detector saturation. The results demonstrate that a range of different sample preparation strategies enable higher mass proteins to be analyzed if the detector technology maintains high detection efficiency throughout the mass range. The detector enables proteins up to 70 kDa to be imaged, and proteins up to 110 kDa to be detected, directly from tissue, and indicates new directions by which the mass range amenable to MALDI imaging MS and MALDI profiling MS may be extended.  相似文献   
40.
Donor-bridge-acceptor triad (Por-2TV-C(60)) and tetrad molecules ((Por)(2)-2TV-C(60)), which incorporated C(60) and one or two porphyrin molecules that were covalently linked through a phenylethynyl-oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto- and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C(60) moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C(60) moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C(60). Then, back-electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)-2TV-C(60) and (Por)(2)-2TV-C(60) acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C(60).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号