首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   13篇
化学   159篇
物理学   15篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   7篇
  2012年   23篇
  2011年   22篇
  2010年   3篇
  2009年   8篇
  2008年   8篇
  2007年   9篇
  2006年   13篇
  2005年   13篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1993年   1篇
  1989年   1篇
排序方式: 共有174条查询结果,搜索用时 31 毫秒
91.
We develop novel calculation and analysis methods for the dynamic first hyperpolarizabilities β [the second-order nonlinear optical (NLO) properties at the molecular level] in the second-harmonic generation based on the quantum master equation method combined with the ab initio molecular orbital (MO) configuration interaction method. As examples, we have evaluated off-resonant dynamic β values of donor (NH(2))- and/or acceptor (NO(2))-substituted benzenes using these methods, which are shown to reproduce those by the conventional summation-over-states method well. The spatial contributions of electrons to the dynamic β of these systems are also analyzed using the dynamic β density and its partition into the MO contributions. The present results demonstrate the advantage of these methods in unraveling the mechanism of dynamic NLO properties and in building the structure-dynamic NLO property relationships of real molecules.  相似文献   
92.
Novel ratiometric fluorescent probes for Zn2+ in the near-infrared region, based on a tricarbocyanine chromophore, have been designed, synthesized, and evaluated. Upon addition of Zn2+, a 44 nm red shift of the absorption maximum was observed, which indicates that this probe could work as a ratiometric probe for Zn2+. This change is due to the difference in the electron-donating ability of the amine substituent before and after reaction with Zn2+. This fluorescence modulation of amine-substituted tricarbocyanines should be applicable to dual-wavelength measurement of various biomolecules or enzyme activities.  相似文献   
93.
The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.  相似文献   
94.
Luminescent lanthanide complexes (Tb(3+), Eu(3+), etc.) have excellent properties for biological applications, including extraordinarily long lifetimes and large Stokes shifts. However, there have been few reports of lanthanide-based functional probes, because of the difficulty in designing suitable complexes with a luminescent on/off switch. Here, we have synthesized a series of complexes which consist of three moieties: a lanthanide chelate, an antenna, and a luminescence off/on switch. The antenna is an aromatic ring which absorbs light and transmits its energy to the metal, and the switch is a benzene derivative with a different HOMO level. If the HOMO level is higher than a certain threshold, the complex emits no luminescence at all, which indicates that the lanthanide luminescence can be modulated by photoinduced electron transfer (PeT) from the switch to the sensitizer. This approach to control lanthanide luminescence makes possible the rational design of functional lanthanide complexes, in which the luminescence property is altered by a biological reaction. To exemplify the utility of our approach to the design of lanthanide complexes with a switch, we have developed a novel protease probe, which undergoes a significant change in luminescence intensity upon enzymatic cleavage of the substrate peptide. This probe, combined with time-resolved measurements, was confirmed in model experiments to be useful for the screening of inhibitors, as well as for clinical diagnosis.  相似文献   
95.
Methods of covalent labeling of a specific tag protein with small-molecular dyes play an important role in studying dynamic behaviors of proteins in living cells. On the basis of quinone methide chemistry, we designed and synthesized a beta-galactosidase labeling probe, CMFbeta-gal, which shows a fluorescence wavelength change accompanying the labeling reaction, owing to fluorescence resonance energy transfer (FRET). Since the FRET efficiency changes accompanying the labeling reaction, fluorescence of labeled protein can be observed separately from that of the unreacted probe, so immediate detection of the target protein is possible. This is the first report of a protein labeling probe which features a change of fluorescence wavelength upon reaction, allowing the labeled protein to be detected even in the presence of unreacted probe.  相似文献   
96.
A reflective thermal lens detection device was developed for realizing a portable and sensitive detector for a microsystem. An aluminum mirror was formed on the main plate of a microchip, and a reflected probe beam was detected with a single pick-up unit. The background signal due to light absorption of the aluminum mirror was 60 times reduced when the microchannel and the mirror were separated with an interval of 600 microm. The tilt angle of the microchip significantly affected the precision of the measurement. Then a quadrant photodiode was used to detect the center of gravity of the reflected probe beam to regulate the tilt angle within +/-0.05 degrees , and this value was enough to achieve 1% CV (coefficient of variance) precision in the measurements. The limit of detection (LOD) was 60 nM for xylene cyanol solution, and the absorbance was 9.4 x 10(-6) AU. About 40 times higher sensitivity was obtained in comparison with a spectrophotometer.  相似文献   
97.
Folate receptors (FRs) are membrane proteins involved in folic acid uptake, and the alpha isoform (FR-α) is overexpressed in ovarian and endometrial cancer cells. For fluorescence imaging of FRs in vivo, the near-infrared (NIR) region (650–900 nm), in which tissue penetration is high and autofluorescence is low, is optimal, but existing NIR fluorescent probes targeting FR-α show high non-specific tissue adsorption, and require prolonged washout to visualize tumors. We have designed and synthesized a new NIR fluorescent probe, FolateSiR-1 , utilizing a Si-rhodamine fluorophore having a carboxy group at the benzene moiety, coupled to a folate ligand moiety through a negatively charged tripeptide linker. This probe exhibits very low background fluorescence and afforded a tumor-to-background ratio (TBR) of up to 83 in FR-expressing tumor-bearing mice within 30 min. Thus, FolateSiR-1 has the potential to contribute to the research in the field of biology and the clinical medicine.  相似文献   
98.
Folate receptors (FRs) are membrane proteins involved in folic acid uptake, and the alpha isoform (FR‐α) is overexpressed in ovarian and endometrial cancer cells. For fluorescence imaging of FRs in vivo, the near‐infrared (NIR) region (650–900 nm), in which tissue penetration is high and autofluorescence is low, is optimal, but existing NIR fluorescent probes targeting FR‐α show high non‐specific tissue adsorption, and require prolonged washout to visualize tumors. We have designed and synthesized a new NIR fluorescent probe, FolateSiR‐1 , utilizing a Si‐rhodamine fluorophore having a carboxy group at the benzene moiety, coupled to a folate ligand moiety through a negatively charged tripeptide linker. This probe exhibits very low background fluorescence and afforded a tumor‐to‐background ratio (TBR) of up to 83 in FR‐expressing tumor‐bearing mice within 30 min. Thus, FolateSiR‐1 has the potential to contribute to the research in the field of biology and the clinical medicine.  相似文献   
99.
We studied the photobleaching of a library of boron dipyrromethene (BODIPY) derivatives with a range of electron densities, and found that the photobleaching rate is influenced by the electron-withdrawing capacity of the substituents. Electron-deficient BODIPYs generated less singlet oxygen, were less reactive to singlet oxygen, and were highly resistant to photobleaching. We confirmed the utility of one of these fluorophores, 2,6-diCO(2)R-BDP, for visualizing EGF receptor dynamics in cells expressing an SNAP-tagged EGF receptor.  相似文献   
100.
Development of a highly sensitive fluorescence probe for hydrogen peroxide   总被引:2,自引:0,他引:2  
Hydrogen peroxide is believed to play a role in cellular signal transduction by reversible oxidation of proteins. Here, we report the design and synthesis of a novel fluorescence probe for hydrogen peroxide, utilizing a photoinduced electron transfer strategy based on benzil chemistry to control the fluorescence. The practical value of this highly sensitive and selective fluorescence probe, NBzF, was confirmed by its application to imaging of hydrogen peroxide generation in live RAW 264.7 macrophages. NBzF was also employed for live cell imaging of hydrogen peroxide generated as a signaling molecule in A431 human epidermoid carcinoma cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号