首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   8篇
化学   102篇
力学   8篇
数学   10篇
物理学   3篇
  2024年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   11篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1989年   2篇
排序方式: 共有123条查询结果,搜索用时 46 毫秒
71.
72.
Highly selective ion-exchange properties and -exchange capacities of the open framework chalcogenide material K(6)Sn[Zn(4)Sn(4)S(17)] (1) with Cs(+) and NH(4)(+) are reported. Because the structure of this framework is known in great detail, these studies are a rare example where structure/property relationships can be directly drawn. 1 possesses three types of micropore cavities. The largest pore of 1 presents an exact fit for Cs(+) and exhibits high selectivity for this ion, as demonstrated by competitive ion-exchange experiments. The next largest pore has a greater capacity (up to four cations) and is well suited for NH(4)(+) ions. This leads to a high ammonium-exchange capacity for 1 of 3.06 mequiv/gr, which is close to the NH(4)(+)-exchange capacities of natural zeolites. The single-crystal structures of ammonium-exchanged products at various stages reveal an unusual mechanism for the exchange process of 1 which involves diffusion of ammonium cations from the large cavity to the small ones of the framework. Thermal analysis of one of these ammonium-exchanged products, in combination with mass spectroscopy, showed the decomposition of NH(4)(+) cations to NH(3) and H(2)S with the parallel transformation of the exchanged product to a mixture of crystalline phases. Since K(6)Sn[Zn(4)Sn(4)S(17)] can be grown in suitably large crystals (much larger than most zeolites), it defines an excellent model system in which ion-exchange processes and products can be characterized and studied in detail in various reaction stages.  相似文献   
73.
74.
The kinetics of the reactions of propane, n‐pentane, and n‐heptane with OH radicals has been studied using a low‐pressure flow tube reactor (P = 1 Torr) coupled with a quadrupole mass spectrometer. The rate constants of the title reactions were determined under pseudo–first‐order conditions, monitoring the kinetics of OH radical consumption in excess of the alkanes. A newly developed high‐temperature flow reactor was validated by the study of the OH + propane reaction, where the reaction rate constant, k1 = 5.1 × 10?17T1.85exp(–160/T) cm3 molecule?1 s?1 (uncertainty of 20%), measured in a wide temperature range, 230–898 K, was found to be in excellent agreement with previous studies and current recommendations. The experimental data for the rate constants of the reactions of OH with n‐pentane and n‐heptane can be represented as three parameter expressions (in cm3 molecule?1 s?1, uncertainty of 20%): k2 = 5.8 × 10?18T2.2exp(260/T) at T= 248–900 K and k3 = 2.7 × 10?16T1.7exp(138/T) at T= 248–896 K, respectively. A combination of the present data with those from previous studies leads to the following expressions: k1 = 2.64 × 10?17T1.93exp(–114/T), k2 = 9.0 × 10?17T1.8 exp(120/T), and k3 = 3.75 × 10?16 T1.65 exp(101/T) cm3 molecule?1 s?1, which can be recommended for k1, k2, and k3 (with uncertainty of 20%) in the temperature ranges 190–1300, 240–1300, and 220–1300 K, respectively.  相似文献   
75.
A novel, simple, and entirely regioselective tandem cycloaddition of biscyclopropyl-substituted alkenes to [60]fullerene has been revealed. This reaction affords cis-1 tricyclic-fused organofullerenes bearing the hitherto elusive 5-4-5 fused tricyclic ring system.  相似文献   
76.
The hydrothermal synthesis of the purely inorganic open-framework indium selenide (NH(4))(4)In(12)Se(20) (1) is reported. Compound 1 exhibits a unique three-dimensional open-framework structure. The framework of 1 shows an unusual, for a chalcogenide compound, rigidity arising from the unprecedented connection mode of its building blocks. Compound 1 possesses ion exchange capacity for Cs(+), Rb(+), NH(4) (+), but it has selectivity against Na(+) and Li(+). It also showed exceptional stability in relatively concentrated hydrochloric acid. Ion exchange of 1 with hydrochloric water solutions can produce its solid acid analogue H(2)(NH(4))(2)In(12)Se(20). The maximum cation-exchange capacity of 1 was found equal to two equivalents per mol, which is consistent with an exchange mechanism taking place in the 1D-channels formed by the largest cavities. In addition, 1 can do ion-exchange with heavy-metal ions like Hg(2+), Pb(2+), and Ag(+). The capacity of 1 to clean water solutions from heavy-metal ions was preliminarily investigated and found very high. Specifically, 1 can remove 99.9 % of Hg(2+), 99.8 % of Ag(+), and 94.9 % of Pb(2+) from aqueous solutions of each of these ions. Using different synthetic conditions, we isolated compound (NH(4))(2)In(12)Se(19) (2), which also has as good an acid stability as 1, but no ion-exchange properties. Overall, this work provides new hydrothermal synthetic approaches for isolation of all-inorganic open-framework chalcogenides.  相似文献   
77.
1,1,3,3-Tetramethyldisiloxane (TMDS) is a highly reactive reducing reagent in the Au/TiO2-catalyzed hydrosilylation of carbonyl compounds relative to monohydrosilanes. The reduction of aldehydes or ketones with TMDS can be performed on many occasions at ambient conditions within short reaction times and at low loading levels of gold, whereas typical monohydrosilanes require excess heating and prolonged time for completion. The product yields are excellent, while almost stoichiometric amounts of carbonyl compounds and TMDS can be used. It is postulated that the enhanced reactivity of TMDS is attributed to the formation of a gold dihydride intermediate. This intermediate is also supported by the fact that double hydrosilylation of carbonyl compounds by TMDS is a negligible pathway.  相似文献   
78.
79.
Gold nanoparticles supported on TiO2 (0.8–1.4 mol %) catalyze the β-(E) regioselective hydrosilylation of a variety of functionalized terminal alkynes with alkylhydrosilanes in 1,2-dichloroethane (70 °C). The product yields are excellent, and the reaction times relatively short, while almost equimolar amounts of alkynes and hydrosilanes can be used. Minor side-products in up to 35% relative yield of cis-oxidative (dehydrogenative) disilylation, an unprecedented reaction pathway, are formed in the cases of the less hindered hydrosilanes and alkynes. Triethoxysilane reacts faster and affords apart from β-(E) addition products, minor α-hydrosilylation regio-isomers in upto 15% relative yield. Internal alkynes are generally less reactive or even unreactive. It is proposed that cationic Au(I) species stabilized by the support are the reactive catalytic sites, forming in the presence of hydrosilanes either silyl–Au(III)–H (hydrosilylation pathway) or Au(III)–disilyl species (dehydrogenative disilylation pathway). Regarding the mechanism of hydrosilylation, kinetic experiments are in agreement with silyl carbometallation of the triple bond in the rate determining step of the reaction.  相似文献   
80.
Gold nanoparticles supported on TiO(2) (1.2 mol %) catalyze, for the first time under heterogeneous conditions, the cycloisomerization of a series of 1,6-enynes in high yields. In several cases, the product selectivity differs significantly as compared to homogeneous Au(I)-catalysis. Based on product analysis and stereoisotopic studies it is proposed that the major or exclusive pathway involves a 5-exo cyclization mode to form stereoselectively gold cyclopropyl carbenes that undergo a single cleavage pathway, in contrast to homogeneous Au-catalysis where the double cleavage pathway operates substantially.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号