首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7205篇
  免费   458篇
  国内免费   31篇
化学   5434篇
晶体学   41篇
力学   128篇
数学   999篇
物理学   1092篇
  2023年   60篇
  2022年   89篇
  2021年   112篇
  2020年   203篇
  2019年   201篇
  2018年   83篇
  2017年   111篇
  2016年   288篇
  2015年   269篇
  2014年   315篇
  2013年   363篇
  2012年   511篇
  2011年   539篇
  2010年   329篇
  2009年   262篇
  2008年   412篇
  2007年   405篇
  2006年   358篇
  2005年   292篇
  2004年   260篇
  2003年   220篇
  2002年   215篇
  2001年   135篇
  2000年   116篇
  1999年   98篇
  1998年   81篇
  1997年   92篇
  1996年   98篇
  1995年   97篇
  1994年   106篇
  1993年   68篇
  1992年   69篇
  1991年   60篇
  1990年   49篇
  1989年   58篇
  1988年   44篇
  1987年   45篇
  1986年   33篇
  1985年   32篇
  1984年   25篇
  1983年   26篇
  1982年   34篇
  1981年   34篇
  1980年   38篇
  1979年   33篇
  1978年   40篇
  1977年   31篇
  1976年   23篇
  1974年   26篇
  1973年   24篇
排序方式: 共有7694条查询结果,搜索用时 15 毫秒
61.
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter-the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.  相似文献   
62.
A capillary electrophoretic method with UV detection at 278 nm has been developed for analysis of the immunosuppressant rapamycin (sirolimus) in human blood at low microgram per liter levels. Separation has been achieved in an acidic carrier electrolyte containing sodium dodecylsulfate and 30% (v/v) acetonitrile. For sample clean-up and preconcentration, an off-line solid-phase extraction step using a silica-based reversed-phase material and an on-capillary focussing technique were employed. The latter allows the injection of increased sample volumes without excessive band broadening. Although this new method is less sensitive than existing liquid chromatographic procedures combined with mass spectrometry, it is fully suited to routine analysis of rapamycin in blood from patients treated with this drug. Last but not least the low costs make it an attractive alternative to established methods.  相似文献   
63.
A template-directed dynamic clipping procedure has generated a library of nine [2]rotaxanes that have been formed from three dialkylammonium salts-acting as the dumbbell-shaped components-and three dynamic, imino bond-containing, [24]crown-8-like macrocycles-acting as the ring-shaped components-which are themselves assembled from three dialdehydes and one diamine. The rates of formation of these [2]rotaxanes differ dramatically, from minutes to days depending on the choice of dialkylammonium ion and dialdehyde, as do their thermodynamic stabilities. Generally, [2]rotaxanes formed by using 2,6-diformylpyridine as the dialdehyde component, or bis(3,5-bis(trifluoromethyl)benzyl)ammonium hexafluorophosphate as the dumbbell-shaped component, assembled the most rapidly. Those rotaxanes containing this particular electron-deficient dumbbell-shaped unit, or 2,5-diformylfuran units in the macroring, were the most stable thermodynamically. The relative thermodynamic stabilities of all nine of the [2]rotaxanes were determined by competition experiments that were monitored by (1)H NMR spectroscopy.  相似文献   
64.
65.
66.
The tetraphosphides (tBu3Si)3P4M3 (M = Li, Na) and (tBu2PhSi)3P4Na3 have been synthesized in high yield from the reaction of 3 equivalents of the silanides tBu3SiM (M = Li, Na) and tBu2PhSiNa with P4 in benzene. (tBu3Si)3P4M3 (M = Li, Na) are transformed into the unsaturated triphosphides (tBu3Si)2P3M (M = Li, Na) and tBu3SiPM2 in tetrahydrofuran at ambient temperature.  相似文献   
67.
Synthesis and Molekular Structures of N‐substituted Diethylgallium‐2‐pyridylmethylamides (2‐Pyridylmethyl)(tert‐butyldimethylsilyl)amine ( 1a ) and (2‐pyridylmethyl)‐di(tert‐butyl)silylamine ( 1b ) form with triethylgallane the corresponding red adducts 2a and 2b via an additional nitrogen‐gallium bond. These oily compounds decompose during distillation. Heating under reflux in toluene leads to the elimination of ethane and the formation of the red oils of [(2‐pyridylmethyl)(tert‐butyldimethylsilyl)amido]diethylgallane ( 3a ) and [(2‐pyridylmethyl)‐di(tert‐butyl)silylamido]diethylgallane ( 3b ). In order to investigate the thermal stability solvent‐free 3a is heated up to 400 °C. The elimination of ethane is observed again and the C‐C coupling product N, N′‐Bis(diethylgallyl)‐1, 2‐dipyridyl‐1, 2‐bis(tert‐butyldimethylsilyl)amido]ethan ( 4 ) is found in the residue. Substitution of the silyl substituents by another 2‐pyridylmethyl group and the reaction of this bis(2‐pyridylmethyl)amine with GaEt3 yield triethylgallane‐diethylgallium‐bis(2‐pyridylmethyl)amide ( 5 ). The metalation product adds immediately another equivalent of triethylgallane regardless of the stoichiometry. The reaction of GaEt3 with 2‐pyridylmethanol gives quantitatively colorless 2‐pyridylmethanolato diethylgallane ( 6 ).  相似文献   
68.
In the presence of [Ru(terpyridine)(2,6‐pyridinedicarboxylate)], aliphatic and benzylic alcohols are oxidized to the corresponding aldehydes or ketones with high selectivity by using hydrogen peroxide as the oxidant. There is no need for the addition of co‐catalysts or organic solvents. By applying an optimized reaction protocol, high catalyst productivity (turnover number>10 000) and activity (turnover frequency up to 14 800 h?1) has been achieved.  相似文献   
69.
Sample/spectrum relationships are investigated using both a low resolution rapid-scanning NIR monochromator and a Fourier transform instrument capable of high resolution and are evaluated in terms of whether or not the resolution of the instrument is sufficient for measuring the natural bandwidths corresponding to the sample. Based on the sample/spectrum relationship a criterion is developed which must be followed in order to apply either derivative spectroscopy or deconvolution to enhance the resolution of overlapped bands without generating spectral artifacts.  相似文献   
70.
The separation of cis/trans isomers of β-carotene has been performed with a C30 stationary phase employing 1H NMR spectroscopy as an on-line detection technique. 1D as well as 2D NMR spectra have been recorded in the stopped-flow mode for the predominant chromatographic peaks. Structural assignment of the five identified isomers was performed via comparison of simulated 1D 1H NMR spectra on the basis of the structures of β-carotene cis/trans isomers with the experimental data, and also by the analysis of the proton-proton connectivities in the 2D NMR spectra of three isomers with the highest concentration. The chromatographic retention behaviour of the isomers agreed well with previously reported data. The advantage of the applied hyphenated coupling technique compared to conventional off-line techniques lies in the fact that chromatographic separation and NMR detection are performed in a closed system, so that reisomerization of the separated compounds is inhibited. Received: 29 May 1996 / Revised: 1 July 1996 / Accepted: 4 July 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号