首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   21篇
化学   206篇
晶体学   1篇
力学   3篇
数学   30篇
物理学   36篇
  2023年   5篇
  2022年   16篇
  2021年   30篇
  2020年   11篇
  2019年   30篇
  2018年   22篇
  2017年   12篇
  2016年   19篇
  2015年   6篇
  2014年   15篇
  2013年   18篇
  2012年   21篇
  2011年   20篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有276条查询结果,搜索用时 187 毫秒
181.
Synthetic carbohydrate receptors (SCRs) that selectively recognize cell-surface glycans could be used for detection, drug delivery, or as therapeutics. Here we report the synthesis of seven new C2h symmetric tetrapodal SCRs. The structures of these SCRs possess a conserved biaryl core, and they vary in the four heterocyclic binding groups that are linked to the biaryl core via secondary amines. Supramolecular association between these SCRs and five biologically relevant C1-O-octyloxy glycans, α/β-glucoside ( α/β-Glc ), α/β-mannoside ( α/β-Man ), and β-galactoside ( β-Gal ), was studied by mass spectrometry, 1H NMR titrations, and molecular modeling. These studies revealed that selectivity can be achieved in these tetrapodal SCRs by varying the heterocyclic binding group. We found that SCR017 (3-pyrrole), SCR021 (3-pyridine), and SCR022 (2-phenol) bind only to β-Glc. SCR019 (3-indole) binds only to β-Man. SCR020 (2-pyridine) binds β-Man and α-Man with a preference to the latter. SCR018 (2-indole) binds α-Man and β-Gal with a preference to the former. The glycan guests bound within their SCR hosts in one of three supramolecular geometries: center-parallel, center-perpendicular, and off-center. Many host–guest combinations formed higher stoichiometry complexes, 2:1 glycan⋅SCR or 1:2 glycan⋅SCR , where the former are driven by positive allosteric cooperativity induced by glycan–glycan contacts.  相似文献   
182.
The study of two-particle azimuthal correlations at high transverse momentum has become an important tool to investigate the interaction of hard partons with the medium formed in high-energy nucleus-nucleus collisions. At SPS energies, pioneering studies by the CERES Collaboration [1] indicated a significant modification of the away-side structure in central collisions. Here we present new results emerging from the analysis of the year 2000 data set recorded with the CERES Time-Projection Chamber, which provides excellent tracking efficiency and significantly improved momentum determination.  相似文献   
183.
We report a very efficient homogeneous system for the visible‐light‐driven hydrogen production in pure aqueous solution at room temperature. This comprises [RhIII(dmbpy)2Cl2]Cl ( 1 ) as catalyst, [Ru(bpy)3]Cl2 ( PS1 ) as photosensitizer, and ascorbate as sacrificial electron donor. Comparative studies in aqueous solutions also performed with other known rhodium catalysts, or with an iridium photosensitizer, show that 1) the PS1 / 1 /ascorbate/ascorbic acid system is by far the most active rhodium‐based homogeneous photocatalytic system for hydrogen production in a purely aqueous medium when compared to the previously reported rhodium catalysts, Na3[RhI(dpm)3Cl] and [RhIII(bpy)Cp*(H2O)]SO4 and 2) the system is less efficient when [IrIII(ppy)2(bpy)]Cl ( PS2 ) is used as photosensitizer. Because catalyst 1 is the most efficient rhodium‐based H2‐evolving catalyst in water, the performance limits of this complex were further investigated by varying the PS1 / 1 ratio at pH 4.0. Under optimal conditions, the system gives up to 1010 turnovers versus the catalyst with an initial turnover frequency as high as 857 TON h?1. Nanosecond transient absorption spectroscopy measurements show that the initial step of the photocatalytic H2‐evolution mechanism is a reductive quenching of the PS1 excited state by ascorbate, leading to the reduced form of PS1 , which is then able to reduce [RhIII(dmbpy)2Cl2]+ to [RhI(dmbpy)2]+. This reduced species can react with protons to yield the hydride [RhIII(H)(dmbpy)2(H2O)]2+, which is the key intermediate for the H2 production.  相似文献   
184.
The formation of 2D surface‐confined supramolecular porous networks is scientifically and technologically appealing, notably for hosting guest species and confinement phenomena. In this study, we report a scanning tunneling microscopy (STM) study of the self‐assembly of a tripod molecule specifically equipped with pyridyl functional groups to steer a simultaneous expression of lateral pyridyl–pyridyl interactions and Cu–pyridyl coordination bonds. The assembly protocols yield a new class of porous open assemblies, the formation of which is driven by multiple interactions. The tripod forms a purely porous organic network on Ag(111), phase α, in which the presence of the pyridyl groups is crucial for porosity, as confirmed by molecular dynamics and Monte Carlo simulations. Additional deposition of Cu dramatically alters this scenario. For submonolayer coverage, three different porous phases coexist (i.e., β, γ, and δ). Phases β and γ are chiral and exhibit a simultaneous expression of lateral pyridyl–pyridyl interactions and twofold Cu–pyridyl linkages, whereas phase δ is just stabilized by twofold Cu–pyridyl bonds. An increase in the lateral molecular coverage results in a rise in molecular pressure, which leads to the formation of a new porous phase (ε), only coexisting with phase α and stabilized by a simultaneous expression of lateral pyridyl–pyridyl interactions and threefold Cu–pyridyl bonds. Our results will open new avenues to create complex porous networks on surfaces by exploiting components specifically designed for molecular recognition through multiple interactions.  相似文献   
185.
The article reports on utilization of double deposition and stripping steps for increasing sensitivity of Cu(II) determination by anodic stripping voltammetry (ASV) at two lead film working electrodes. A significant preconcentration of copper was achieved thanks to utilization of a simple design of four electrodes system that gives possibility to perform one measurement cycle consisting of two deposition and two stripping steps. Due to the fact that deposition step is doubled, the concentration of Pb(II) needed to lead film electrodes formation was significantly reduced as compared to traditional procedures using three electrodes system. The analytical procedure of Cu(II) determination was optimized. The experimental factors: supporting electrolyte's pH and its concentration, lead ions concentration, potential and time of deposition at both working electrodes were studied. The Cu(II) peak current was linearly dependent on its concentration from 5×10?10 to 2×10?8 mol L?1 (deposition time of 270 and 160 s at the first and the second working electrode, respectively). The obtained detection limit for copper ions determination was 2.1×10?10 mol L?1. The described procedure was validated by analysis of two water certified reference materials. The described procedure was also utilized for real water sample analysis.  相似文献   
186.
C−O bond activation of DPEphos occurs upon mild heating in the presence of [Ru(NHC)2(PPh3)2H2] (NHC=N-heterocyclic carbene) to form phosphinophenolate products. When NHC=IEt2Me2, C−O activation is accompanied by C−N activation of an NHC ligand to yield a coordinated N-phosphino-functionalised carbene. DFT calculations define a nucleophilic mechanism in which a hydride ligand attacks the aryl carbon of the DPEphos C−O bond. This is promoted by the strongly donating NHC ligands which render a trans dihydride intermediate featuring highly nucleophilic hydride ligands accessible. C−O bond activation also occurs upon heating cis-[Ru(DPEphos)2H2]. DFT calculations suggest this reaction is promoted by the steric encumbrance associated with two bulky DPEphos ligands. Our observations that facile degradation of the DPEphos ligand via C−O bond activation is possible under relatively mild reaction conditions has potential ramifications for the use of this ligand in high-temperature catalysis.  相似文献   
187.
188.
Direct alkylation of 9,9′,9′′‐triethyl[2.2.2](2,7)carbazolophane with dimethoxymethane or paraformaldehyde affords a belt‐like heteroaromatic structure, which forms as a kinetic product in acid‐catalyzed condensations. In a competing, thermodynamically favored process, polymeric structures are formed by a largely regioselective condensation of stereochemically rigid “semi‐belts”. The relationship between these reactivity routes is rationalized in terms of strain release and differential reversibility of consecutive condensation steps.  相似文献   
189.
Diffusion‐ordered multidimensional NMR spectroscopy is a valuable technique for the analysis of complex chemical mixtures. However, this method is very time‐consuming because of the costly sampling of a multidimensional signal. Various sparse sampling techniques have been proposed to accelerate such measurements, but they have always been limited to frequency dimensions of NMR spectra. It is now revealed how sparse sampling can be extended to diffusion dimensions.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号