首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   35篇
  国内免费   8篇
化学   548篇
晶体学   6篇
力学   52篇
数学   93篇
物理学   113篇
  2024年   1篇
  2023年   6篇
  2022年   14篇
  2021年   18篇
  2020年   54篇
  2019年   41篇
  2018年   40篇
  2017年   35篇
  2016年   44篇
  2015年   44篇
  2014年   46篇
  2013年   87篇
  2012年   60篇
  2011年   62篇
  2010年   42篇
  2009年   50篇
  2008年   27篇
  2007年   20篇
  2006年   20篇
  2005年   21篇
  2004年   17篇
  2003年   10篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有812条查询结果,搜索用时 15 毫秒
141.
The interaction of solitary waves with multiple, in-line vertical cylinders is investigated. The fixed cylinders are of constant circular cross section and extend from the seafloor to the free surface. In general, there are N of them lined in a row parallel to the incoming wave direction. Both the nonlinear, generalized Boussinesq and the Green–Naghdi shallow-water wave equations are used. A boundary-fitted curvilinear coordinate system is employed to facilitate the use of the finite-difference method on curved boundaries. The governing equations and boundary conditions are transformed from the physical plane onto the computational plane. These equations are then solved in time on the computational plane that contains a uniform grid and by use of the successive over-relaxation method and a second-order finite-difference method to determine the horizontal force and overturning moment on the cylinders. Resulting solitary wave forces from the nonlinear Green–Naghdi and the Boussinesq equations are presented, and the forces are compared with the experimental data when available.  相似文献   
142.
The present study reports the preparation and characterization of PbO nanocrystals obtained via a thermal decomposition route. The PbO nanocrystals were synthesized using lead oxalate powder as a precursor. Nanostructured products were investigated by means of XRD, TEM, FT-IR and XPS. The XRD results indicate that tetragonal phase β-PbO with a particle size of about 30–45 nm was obtained when the intermediate precipitate was calcined at 500 °C.  相似文献   
143.
Thermal conductivity is an important parameter in the field of nanofluid heat transfer. This article presents a novel model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial shell properties. According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based nanofluids.  相似文献   
144.
In this paper, by applying the SSOR splitting, we propose two new iterative methods for solving the linear complementarity problem LCP (M,q). Convergence results for these two methods are presented when M is an H-matrix (and also an M-matrix). Finally, two numerical examples are given to show the efficiency of the presented methods.  相似文献   
145.
146.
The reaction of solution 2,6‐pyridinedicarboxylic acid and 1,10‐phenanthroline ( 1 ) with CrCl3·6H2O led to the complex [Cr(phen)(pydc)(H2O)][Cr(pydc)2]·4H2O ( 2 ) (phen is 1,10‐phenanthroline and pydcH2 is 2,6‐pyridinedicarboxylic acid). 2 was characterized by elemental analysis, IR spectroscopy and single‐crystal structure determination. Crystal data for 2 at ?80 °C: triclinic, space group , a = 818.5(1), b = 1492.2(1), c = 1533.6(2) pm, α = 76.45(1)°, β = 84.22(1)°, γ = 77.99(1)°, Z = 2, R1 = 0.0416.  相似文献   
147.
We investigate whether upscaling errors for EOR simulation can be reduced by an upscaling–static-downscaling method where the scales of simulation for the pressure and saturation/concentration switch between coarse simulation model and fine geological model. We apply a static downscaling that has been previously shown to be reliable for water flooding. We use the same algorithm of static downscaling for EOR processes that have been used for water flooding. Different EOR processes are considered: polymer, surfactant and thermal. This range of flooding processes ensures that we are examining more physically complicated systems than water flooding. For these processes, one major difference from water flooding is existence of a secondary front. The effective capturing of this front is a criterion of accuracy for upscaling because, for this front, the coupling of dispersion with the fractional flow creates excessive smearing. A scheme for numerical dispersion control is implemented to both upscaled and downscaled models to determine and reduce the sensitivity to dispersion errors.  相似文献   
148.
This article reports a numerical study of double-diffusive convection in a fluid-saturated vertical porous annulus subjected to discrete heat and mass fluxes from a portion of the inner wall. The outer wall is maintained at uniform temperature and concentration, while the top and bottom walls are adiabatic and impermeable to mass transfer. The physical model for the momentum equation is formulated using the Darcy law, and the resulting governing equations are solved using an implicit finite difference technique. The influence of physical and geometrical parameters on the streamlines, isotherms, isoconcentrations, average Nusselt and Sherwood numbers has been numerically investigated in detail. The location of heat and solute source has a profound influence on the flow pattern, heat and mass transfer rates in the porous annulus. For the segment located at the bottom portion of inner wall, the flow rate is found to be higher, whereas the heat and mass transfer rates are higher when the source is placed near the middle of the inner wall. Further, the average Sherwood number increases with Lewis number, while for the average Nusselt number the effect is opposite. The average Nusselt number increases with radius ratio (λ); however, the average Sherwood number increases with radius ratio only up to λ = 5, and for λ > 5 , the average Sherwood number does not increase significantly.  相似文献   
149.
Carbonated water injection (CWI) is a CO2-augmented water injection strategy that leads to increased oil recovery with added advantage of safe storage of CO2 in oil reservoirs. In CWI, CO2 is used efficiently (compared to conventional CO2 injection) and hence it is particularly attractive for reservoirs with limited access to large quantities of CO2, e.g. offshore reservoirs or reservoirs far from large sources of CO2. We present the results of a series of CWI coreflood experiments using water-wet and mixed-wet Clashach sandstone cores and a reservoir core with light oil (n-decane), refined viscous oil and a stock-tank crude oil. The experiments were carried out to assess the performance of CWI and to quantify the level of additional oil recovery and CO2 storage under various experimental conditions. We show that the ultimate oil recovery by CWI is higher than the conventional water flooding in both secondary and tertiary recovery methods. Oil swelling as a result of CO2 diffusion into the oil and the subsequent oil viscosity reduction and coalescence of the isolated oil ganglia are amongst the main mechanisms of oil recovery by CWI that were observed through the visualisation experiments in high-pressure glass micromodels. There was also evidence of a change in the rock wettability that could also influence the oil recovery. The coreflood test results also reveal that the CWI performance is influenced by oil viscosity, core wettability and the brine salinity. Higher oil recovery was obtained with the mixed-wet core than the water-wet core, with light oil than with the viscous oil and low salinity carbonated brine than high-salinity carbonated brine. At the end of the flooding period, an encouraging amount of the injected CO2 was stored in the brine and the remaining oil in the form of stable dissolved CO2. The experimental results clearly demonstrate the potential of CWI for improving oil recovery as compared with the conventional water flooding (secondary recovery) or as a water-based EOR (enhanced oil recovery) method for watered out reservoirs.  相似文献   
150.
ZnO nanoparticles, 10–20 nm in size, were synthesized by heat treatment in air at 500 °C for 5 h., using [N,N′-bis(salicylaldehydo) ethylene diamine]zinc(II), i.e., Zn(salen), as precursor, which was obtained by a solvent-free solid–solid reaction. Heat-treated products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Room temperature photoluminescence spectra of ZnO nanostructures are dominated by green emission attributed to oxygen vacancy related donor–acceptor transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号