Summary Complexes of CoII, NiII, CuII, PdII, and PtIV with 2,4,5-trihydroxybenzoic acid and its substituted phenylazoderivatives have been prepared, together with some mixed-metal (Co, Cu or Ni, Cu) complexes of itsm-nitro,m-carboxy andm-hydroxyarylazo derivatives. The stereochemistries and the modes of bonding of the complexes were elucidated by spectral and magnetic susceptibility measurements.Abstracted from her Ph.D. thesis. 相似文献
Journal of Thermal Analysis and Calorimetry - The purpose of this study is to numerically investigate flow field and turbulent heat transfer of hybrid nanofluid, water–DWCNT–TiO2 in a... 相似文献
Fluid atomic behavior is an important factor for industrial applications. Computer simulations based on simple models predict Poiseuille flow for these atomic structures with the presence of external force. In this work, we describe the dynamical properties of Ar and O2 flows with precise atomic arrangement via dissipative particle dynamics (DPD) and molecular dynamics (MD) simulation approaches. In these methods, each model is represented by using Large-scale Atomic/Molecular Massively Parallel Simulator package. Simulation results show that maximum rate for velocity of Ar flow in platinum and copper microchannels is 0.100 (unit less)/0.091 Å ps?1 and 0.121 (unit less)/0.105 Å ps?1 by using DPD/MD approach. This atomic parameter changes to 0.111 (unit less)/0.102 Å ps?1 and 0.125 (unit less)/0.108 Å ps?1 for O2 fluid with mentioned approaches. By decreasing the microchannel size, the maximum rate of velocity reaches to 0.101 (unit less)/0.099 Å ps?1 and maximum temperature rate decreases to 485 (unit less)/440 K with DPD/MD approaches. These calculated parameters can be used in industrial application designing for some processes such as heat transfer in structures. It was seen that the developed DPD approach was able to simulate the fluid flow and heat transfer of various types of fluids at micro- and nanoscales with suitable accuracy versus MD.
Cross-linked polystyrene (PS) particles having red blood corpuscle (RBC)-like shape were synthesized by one-pot dispersion polymerization of styrene with ethanol/water mixture and ethylene glycol dimethacrylate (EGDMA) as the reaction medium and cross-linker, respectively. Monitoring of the reaction showed that RBC-like shape forms due to asymmetric shrinkage of a cross-linked network during the phase separation. In addition, three dimensional phase diagram was generated based on the yielded data that showed that the formation of such unique shape extremely depends on the polarity of the medium and injection time of the cross-linker. In situ synthesis of RBC-like particles, as promising biomaterials in targeted drug delivery and a model for the understanding of the cell behavior, via such fast and high solid content approach makes it to be conducive to subsequent scale up, i.e. potential commercial adoption. 相似文献
Research on Chemical Intermediates - ZnAl2O4/ZnO nanocomposites with different ZnO (20, 30, and 40 mol%) concentrations and coated samples on supports were successfully prepared through... 相似文献
The effect of Zr as a grain refiner on the solidification behavior, micro- and macrostructure of a new Al–Zn–Mg–Cu aluminum super-high strength alloy containing high Zn content was studied. The addition of 2 mass% Zr reduced the grain size from 1500 to 190 μm. Moreover, the dendritic structure of the alloy altered from a coarse, elongated and non-uniform morphology to a rosette-like shape and more uniform one. The parameters of liquidus region of cooling curve obtained from thermal analysis were in a good correlation with grain size results. The maximum of first derivative in the liquidus region was introduced beside recalescence undercooling which could predict the grain refinement level even after disappearing of recalescence in the cooling curve. Furthermore, the addition of 1 mass% Zr enhanced fraction of solid in dendrite coherency point from 21 to 31% and lessened the amounts of porosity from 2.3 to 1.4%. 相似文献
The present work deals with the adsorption of uranium from a nitric acid waste solution using the cation exchange resin Amberjet 1200 H (AHR) . Batch experiments were performed in order to assess the performance of AHR in uranium adsorption. The influences of pH, contact time, initial uranium concentration and temperature have been enhanced. The physical parameters including the adsorption kinetics, the isotherm models and the thermodynamic data have also been determined to determine the nature of the uranium adsorption by AHR. The studied resin has been agreed with both the pseudo second order reaction and Langmuir isotherm. 相似文献
In this study, various beta-blocker drugs used for heart disease were analyzed, and their degree-based topological indices derived from the M-polynomial were calculated. Linear and quadratic regression analysis was used to obtain quantitative structure-property relationship models between the topological indices and eight the physicochemical properties of the drugs to determine their effectiveness. The results show that the harmonic index was the best predictor for boiling point, flashpoint, and enthalpy of vaporization, while the redefined third Zagreb index was effective for polarizability, molar refractivity, and molar volume. The inverse sum indeg index was found to be effective for molar refractivity, and the second modified Zagreb index was surface tension in linear regression models. In addition, the redefined third Zagreb index was the best predictor for polarizability and molar refractivity, while the second modified Zagreb index was effective for molar volume. The SDD index was found to be effective for surface tension in quadratic regression models. 相似文献