首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
  国内免费   5篇
化学   56篇
力学   2篇
数学   1篇
物理学   10篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   9篇
  2013年   13篇
  2012年   6篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
排序方式: 共有69条查询结果,搜索用时 234 毫秒
11.
Here, an electrokinetic extraction (EkE) syringe is presented allowing for on-line electrokinetic removal of serum proteins before ESI-MS. The proposed concept is demonstrated by the determination of pharmaceuticals from human serum within minutes, with sample preparation limited to a 5× dilution of the sample in the background electrolyte (BGE) and application of voltage, both of which can be performed in-syringe. Signal enhancements of 3.6–32 fold relative to direct infusion of diluted serum and up to 10.8 fold enhancement, were obtained for basic and acidic pharmaceuticals, respectively. Linear correlations for the basic drugs by EkE-ESI-MS/MS were achieved, covering the necessary clinical range with LOQs of 5.3, 7.8, 6.1, and 17.8 ng mL−1 for clomipramine, chlorphenamine, pindolol, and atenolol, respectively. For the acidic drugs, the EkE-ESI-MS LOQs were 3.1 μg mL−1 and 2.9 μg mL−1 for naproxen and paracetamol, respectively. The EkE-ESI-MS and EkE-ESI-MS/MS methods showed good accuracy (%found of 81 % to 120 %), precision (≤20 %), and linearity (r>0.997) for all the studied drugs in spiked serum samples.  相似文献   
12.
The highly reactive 1:1 intermediate generated in the reaction between an alkyl isocyanide and a dialkyl acetylenedicarboxylate is trapped by N-alkyl isatin to yield iminolactones in fairly high yields.  相似文献   
13.
Much progress has been made in the treatment of cancer. However, it remains a significant challenge to treat as toxic chemotherapeutic drugs are often poorly tolerated when administered together, limiting the patient’s treatment options. A possible solution to this problem is anchoring drugs on the surface of nanoparticles. These systems have a variety of structures with sizes, shapes and materials which determine loading capacity, cellular targeting and stability. Dendrimers are a class of nanoparticles which have been investigated in this context. In this study, we investigated the functionalization of polyamidoamine (PAMAM) dendrimers with some anticancer medications that suppresses the growth of cancer cells (carmustine, lomustine, semustine and melphalan; 1–4). The possibility of drug release, drug delivery and drug separation by PAMAM was theoretically investigated and discussed. The predicted theoretical method will be interesting to remove the pollutants from the medical solutions by PAMAM dendrimer nanoclusters. The results of the modeling were obtained by MMFF94 and RHF/PM6 methods for all form of the PAMAM–medicines complexes. The obtained results by these two methods were shown same trend of the relative energy surfaces of the complexes of PAMAM–medicines 1–4.  相似文献   
14.
15.
There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y p/x), biosurfactant on sucrose (Y p/s), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g−1, 0.18 g g−1, and 0.03 g l−1 h−1, respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y x/s, Y p/x, Y p/s, and Y of 0.42 g g−1, 0.595 g g−1, 0.25 g g−1, and 0.057 g l−1 h−1, respectively. The biosurfactant maximum production, 2.5 g l−1, was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K L a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s−1, respectively. Comparison of K L a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K L a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.  相似文献   
16.
17.
18.
The development of efficient cell-free systems of nanoparticle synthesis using microbial enzymes is a growing field of biological and green chemistry for the supportable improvement in nano-biotechnology. In the present study, we established a cell-free system for producing gold nanoparticles (AuNPs) using a fungal oxidoreductase named sulfite oxidoreductase purified to homogeneity from Fusarium oxysporum. The enzyme was purified by ultrafiltration followed by anion exchange chromatography on DEAE Sephadex A-50 gel, and its molecular weight was determined by gel filtration chromatography on Sephacryl S-300 gel. The purified enzyme had a molecular weight of 346 kDa. It was composed of three subunits of 176, 94 and 76 kDa. Purified enzyme was successfully used for production of gold nanoparticles in a cell-free system. Synthesized gold nanoparticles showed the highest absorbance at 520 nm wavelength as shown by UV–visible spectroscopy. They were spherical in shape with an average size of 20 nm as determined by scanning and transmission electron microscopy and dynamic light scattering. Assessment of the antifungal properties of synthesized nanoparticles by disk diffusion method indicated a potent growth inhibitory activity against all tested human pathogenic yeasts and molds by inhibition zones ranged from 10 to 18 mm. Taken together, our enzymatically established method of nanoparticle synthesis using a purified sulfite oxidoreductase of F. oxysporum can be considered as an efficient tool for generating harmless bioactive gold nanoparticles with potential applications in biology, medicine and industry.  相似文献   
19.
A new-type of sulfide containing diacid (1,1′-thiobis(2-naphthoxy acetic acid)) was synthesized from 2-naphthol in three steps. Reaction of 2-naphthol with sulfur dichloride afforded 1,1′-thiobis(2-naphthol) (TBN). 1,1′-Thiobis(2-naphthoxy acetic ester) (TBNAE) was successfully synthesized by refluxing the TBN with methylcholoroacetate in the presence of potassium carbonate. The related diacid was synthesized by basic solution reduction of TBNAE. The obtained diacid was fully characterized and used to prepare novel thermally stable poly(sulfide ether amide)s via polyphosphorylation reaction with different aromatic diamines. The properties of these new polyamides were investigated and compared with similar polyamides. These polyamides showed inherent viscosities in the range of 0.39-0.87 dL g−1 in N,N-dimethylacetamide (DMAc) at 30 °C and at a concentration of 0.5 g dL−1. All the polyamides were readily soluble in a variety of polar solvents such as DMAc and tetrahydrofuran (THF). These polyamides showed glass transition temperature (Tg) between 241-268 °C. Thermogravimetric analysis measurement revealed the decomposition temperature at 10% weight loss (T10) ranging from 441- 479 °C in argon atmosphere.  相似文献   
20.
Ultrasonic irradiation was efficiently used for high yield synthesis of monoarylidene derivatives of cyclic systems directly from the reaction of ketone with various aldehydes under solvent-free conditions. Reactions took place rapidly in the presence of catalytic amounts of pyrrolidine, while no significant formation of the undesired bis by-products was observed. Moreover, the procedure was applicable to both homo- and heterocyclic ketones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号