首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   3篇
化学   169篇
晶体学   2篇
力学   6篇
数学   5篇
物理学   46篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   13篇
  2009年   7篇
  2008年   7篇
  2007年   14篇
  2006年   18篇
  2005年   7篇
  2004年   12篇
  2003年   16篇
  2002年   16篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   7篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1974年   5篇
  1973年   3篇
  1970年   4篇
  1969年   1篇
  1966年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
11.
Complexes of methyl methacrylate and methacrylonitrile with Lewis acids (SnCl4, AlCl3, and BF3) were copolymerized with styrene at ?75°C under irradiation with a high-pressure mercury lamp in toluene solution. The resulting copolymers consisted of equimolar amount of methyl methacrylate or methacrylonitrile and styrene, regardless of the molar ratio of monomers in the feed. NMR spectroscopy showed the copolymers to have an alternate sequence. The tacticities of the copolymers varied with the complex to have an alternate sequence. The tacticities of the copolymers varied with the complex species: the copolymer from the SnCl4 complex system had a higher cosyndiotactieity, while those from the AlCl3 and the BF3 complex systems showed coisotacticity to predominate over cosyndiotacticity. NMR spectroscopic investigation of the copolymerization system indicated the presence of a charge-transfer complex between the styrene and the methyl methacrylate coordinated to SnCl4. The concentration of the charge-transfer complex was estimated to be about 30% of monomer pairs at ?78°C at a 1:1 molar ratio of feed. The growing end radicals were identified as a methyl methacrylate radical for the AlCl3 complex–styrene system and a styrene radical for the SnCl4 complex–styrene system by the measurement of the ESR spectra of the copolymerization systems under or after irradation with a high-pressure mercury lamp. The tacticity of the resulting polymer appears to be controlled by the structure of the charge transfer complex. In the case of the SnCl4 complex a certain interaction of SnCl4 with the growing end radical seems to be a factor controlling the polymer structure. These copolymerizations can be explained by an alternating charge-transfer complex copolymerization scheme.  相似文献   
12.
A novel carbonate (co)precipitation method, employing nitrates as the starting salts and ammonium carbonate as the precipitant, has been used to synthesize nanocrystalline CeO2 and Ce1−xYxO2−x/2 (x≤0.35) solid-solutions. The resultant powders are characterized by elemental analysis, differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Due to the direct formation of carbonate solid-solutions during precipitation, Ce1−xYxO2−x/2 solid-solution oxides are formed directly during calcination at a very low temperature of ∼300°C for 2 h. The thus-produced oxide nanopowders are essentially non-agglomerated, as revealed by BET in conjunction with XRD analysis. The solubility of YO1.5 in CeO2 is determined via XRD to be somewhere in the range from 27 to 35 mol%, from which a Y2O3-related type-C phase appears in the final product. Y3+-doping promotes the formation of spherical nanoparticles, retards thermal decomposition of the precursors, and suppresses significantly crystallite coarsening of the oxides during calcination. The activation energy for crystallite coarsening increases gradually from 68.7 kJ mol−1 for pure CeO2 to 138.6 kJ mol−1 for CeO2 doped with 35 mol% YO1.5. The dopant effects on crystallite coarsening is elaborated from the view point of solid-state chemistry.  相似文献   
13.
Doped ceria (CeO2) compounds are fluorite type oxides that show oxygen ionic conductivity higher than yttria stabilized zirconia, in oxidizing atmosphere. In order to improve the conductivity, the effective index was suggested to maximize the oxygen ionic conductivity in doped CeO2 based oxides. In addition, the true microstructure of doped CeO2 was observed at atomic scale for conclusion of conduction mechanism. Doped CeO2 had small domains (10-50 nm) with ordered structure in a grain. It is found that the electrolytic properties strongly depended on the nano-structural feature at atomic scale in doped CeO2 electrolyte. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
14.
Host-parasitoid systems with evolving mutation rates are studied. By increasing the growth rate of hosts, the diversity of both species is maintained dynamically. For the lower growth rate, diversity is brought about by mere parasitism. The average mutation rate for parasites is elevated to a high value, while that for hosts is suppressed at a low level. For the higher growth rate, the mutation rates for both hosts and parasites are elevated to form a symbiotic cluster connected by on-going mutation. This symbiotic state is sustained through a chaotic oscillation keeping some coherency among species. For a flat landscape for hosts, dynamical clustering of oscillation is observed. Lyapunov spectra of such oscillations show that high dimensional chaos with small positive exponents underlies in the symbiotic state. This weak high dimensional chaos, termed "homeochaos," is essential to the maintenance of symbiosis in ecosystems.  相似文献   
15.
Sperm whale myoglobin, an oxygen storage hemoprotein, was successfully reconstituted with the iron porphycene having two propionates, 2,7-diethyl-3,6,12,17-tetramethyl-13,16-bis(carboxyethyl)porphycenatoiron. The physicochemical properties and ligand bindings of the reconstituted myoglobin were investigated. The ferric reconstituted myoglobin shows the remarkable stability against acid denaturation and only a low-spin characteristic in its EPR spectrum. The Fe(III)/Fe(II) redox potential (-190 mV vs NHE) determined by the spectroelectrochemical measurements was much lower than that of the wild-type. These results can be attributed to the strong coordination of His93 to the porphycene iron, which is induced by the nature of the porphycene ring symmetry. The O2 affinity of the ferrous reconstituted myoglobin is 2600-fold higher than that of the wild-type, mainly due to the decrease in the O2 dissociation rate, whereas the CO affinity is not so significantly enhanced. As a result, the O2 affinity of the reconstituted myoglobin exceeds its CO affinity (M' = K(CO)/K(O2) < 1). The ligand binding studies on H64A mutants support the fact that the slow O2 dissociation of the reconstituted myoglobin is primarily caused by the stabilization of the Fe-O2 sigma-bonding. The IR spectra for the carbon monoxide (CO) complex of the reconstituted myoglobin suggest several structural and/or electrostatic conformations of the Fe-C-O bond, but this is not directly correlated with the CO dissociation rate. The high O2 affinity and the unique characteristics of the myoglobin with the iron porphycene indicate that reconstitution with a synthesized heme is a useful method not only to understand the physiological function of myoglobin but also to create a tailor-made function on the protein.  相似文献   
16.
Selectivity of 15 stationary phases was examined, either commercially available or synthesized in-house. The highest selectivity factors were observed for solute molecules having different polarizability on the 3-(pentabromobenzyloxy)propyl phase (PBB), followed by the 2-(1-pyrenyl)ethyl phase (PYE). Selectivity of fluoroalkane 4,4-di(trifluoromethyl)-5,5,6,6,7,7,7-heptafluoroheptyl (F13C9) phase is lowest among all phases for all compounds except for fluorinated ones. Aliphatic octyl (C8) and octadecyl (C18) phases demonstrated considerable selectivity, especially for alkyl compounds. While PBB showed much greater preference for compounds with high polarizability containing heavy atoms than C18 phase, F13C9 phase showed the exactly opposite tendency. These three stationary phases can offer widely different selectivity that can be utilized when one stationary phase fails to provide separation for certain mixtures. The retention and selectivity of solutes in reversed-phase liquid chromatography is related to the mobile phase and the stationary phase effects. The mobile phase effect, related to the hydrophobic cavity formation around non-polar solutes, is assumed to have a dominant effect on retention upon aliphatic stationary phases such as C8, C18. In a common mobile phase significant stationary phase effect can be attributed to dispersion interaction. Highly dispersive stationary phases such as PBB and PYE retain solutes to a significant extent by (attractive) dispersion interaction with the stationary phase ligands, especially for highly dispersive solutes containing aromatic functionality and/or heavy atoms. The contribution of dispersion interaction is shown to be much less on C18 or C8 phases and was even disadvantageous on F13C9 phase. Structural properties of stationary phases are analyzed and confirmed by means of quantitative structure-chromatographic retention (QSRR) study.  相似文献   
17.
Macroscopic and spatially ordered motions of self‐assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter‐scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self‐assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry.  相似文献   
18.
A differential pumping system with a Plasma Window (PW) has been developed for an application to a window-less He gas charge stripper. A PW with Southern Methodist University design was newly fabricated and tested off-line for evaluation of differential pumping efficiency. Switching gases for plasma seed from Ar to He was tested. It was found that the PW reduced the pressure at the first differential pumping section to 1/13 for Ar and to 1/17 for He, comparing with differential pumping without PW. At the second pumping section, the pressures were drastically reduced to 1/160 and to 1/4,520 for Ar and He, respectively. These pressure reduction factors indicate that one differentially pumped stage could be removed from a conventional differential pumping system.  相似文献   
19.
The ordering of protons has been observed at a new storage ring, S-LSR, at Kyoto University. Abrupt jumps in the momentum spread and the Schottky noise power were observed for protons for the first time at a particle number of approximately 2000, upon applying electron cooling with electron currents of 25, 50, and 100 mA. The transition temperature was 0.17 and 1 meV in the longitudinal and transverse directions, respectively. The transverse temperature of the proton beam was much below that of electrons at the transition, which played an essential role in the ordering of protons.  相似文献   
20.

Cellulose, which comprises D-glucose and L-glucose (D,L-cellulose), was synthesized from D-glucose (1D) and L-glucose (1L) via cationic ring-opening polymerization. Specifically, the ring-opening copolymerization of 3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranoside (2D) and 3-O-benzyl-2,6-di-O-pivaloyl-β-D-glucopyranoside (2L), synthesized from compounds 1D and 1L, respectively, in a 1:1 ratio, afforded 3-O-benzyl-2,6-di-O-β-D,L-glucopyranan (3DL) with a degree of polymerization (DPn) of 28.5 (Mw/Mn?=?1.90) in quantitative yield. The deprotection of compound 3DL and subsequent acetylation proceeded smoothly to afford acetylated compound 4DL with a DPn of 18.6 (Mw/Mn?=?2.08). The specific rotation of acetylated compound 4DL was?+?0.01°, suggesting that acetylated compound 4DL was optically inactive cellulose triacetate. Furthermore, before acetylation, compound 4DL was an optically inactive cellulose comprising an almost racemic mixture of D-glucose and L-glucose. Compound 4DL was an amorphous polymer. This is the first reported synthesis of optically inactive D,L-cellulose.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号