首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   36篇
  国内免费   2篇
化学   586篇
晶体学   4篇
力学   8篇
数学   13篇
物理学   74篇
  2023年   4篇
  2021年   9篇
  2020年   13篇
  2019年   17篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   16篇
  2014年   30篇
  2013年   38篇
  2012年   42篇
  2011年   39篇
  2010年   22篇
  2009年   20篇
  2008年   48篇
  2007年   39篇
  2006年   40篇
  2005年   39篇
  2004年   39篇
  2003年   32篇
  2002年   26篇
  2001年   4篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   13篇
  1996年   15篇
  1995年   3篇
  1994年   4篇
  1993年   8篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1980年   2篇
  1979年   7篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
61.
γ-Fe2O3 has a spinel structure with cation vacancy and is expected to perform as a favorable electrode material for secondary lithium-ion battery. When lithium is inserted electrochemically into γ-Fe2O3, prolonged potential change is observed after the insertion. In this study, we inserted various amount of Li into γ-Fe2O3 (x = 0.66, 1.1, 1.5 in terms of LiXFe2O3), then made the circuit open, measured X-ray diffraction (XRD) patterns at various elapsed time, and analyzed the crystal structure change of γ-Fe2O3 with time by the Rietveld method. The X-ray Rietveld analysis revealed that the iron occupancy of 8a site decreased and that of 16c site increased with lithium insertion process and after lithium insertion, the iron occupancy of 8a site increased and that of 16c site decreased gradually with relaxation time. It is indicated that lithium prefer 8a site to occupy kinetically, on the other hand, prefer 16c site thermodynamically.  相似文献   
62.
63.
Selective formation of ZnO nanodots grown by metalorganic chemical vapor deposition (MOCVD) was achieved on focused-ion beam (FIB)-nanopatterned SiO2 and Si substrates. The selective formation characteristics, dimension, and density of ZnO nanodots on FIB-nanopatterned substrates strongly depended on the FIB-patterning and MOCVD-growth conditions. The mechanism of the selective formation of ZnO nanodots on FIB-nanopatterned SiO2 substrates is attributed to a surfactant effect of the implanted Ga which leads to the formation of the preferred nucleation sites for the growth of ZnO nanodots, while that of ZnO nanodots on nanopatterned Si substrates is mainly considered in terms of the generation of surface atomic steps and kinks, which are created by Ga+ ion sputtering, on the patterned Si areas.  相似文献   
64.
65.
A new kind of the thermo-sensitive and fluorescent complex of poly(N-isopropylacrylamide) (PNIPAM) and Tb(III) was synthesized by free radical polymerization, in which PNIPAM was used as a polymer ligand. The complex was characterized by using X-ray photoelectron spectroscopy (XPS), ultraviolet-visual (UV), Fourier transform infrared (FT-IR) and fluorescence spectroscopy. The results from the experiments indicated that there is a strong interaction between PNIPAM and Tb(III), leading to a decrease in the electron density of nitrogen and oxygen atoms and an increase in the electron density of Tb(III) in the PNIPAM containing Tb(III) by contrast with PNIPAM and Tb(III), respectively, meanwhile, exhibiting that the Tb(III) is mainly bonded to oxygen atoms in the polymer chain of PNIPAM and formed the complex of PNIPAM-Tb(III). After forming the PNIPAM-Tb(III) complex, the emission fluorescence intensity of Tb(III) in the PNIPAM-Tb(III) complex is significantly enhanced because the effective intramolecular energy transfer from PNIPAM to Tb(III). Especially, the emission intensity of the fluorescence peak at 547 nm can be increased as high as 145 times comparing with that of the pure Tb(III). The intramolecular energy transfer efficiency for fluorescence peak at 547 nm can reach as high as 68%. The fluorescence intensity is related the weight ratio of Tb(III) and PNIPAM in the PNIPAM-Tb(III) complex. When the weight ratio is 1.4%, the maximum fluorescence enhancement can be obtained. Nevertheless, the lower critical solution temperature of PNIPAM containing a low content of Tb(III) has not obviously changed after the formation of the complex of PNIPAM-Tb(III) by the interaction between PNIPAM and Tb(III). This novel thermosensitive and fluorescence characterization of the PNIPAM-Tb(III) complex may be useful in the fluorescence systems and the biomedical field.  相似文献   
66.
We adopted laser Thomson scattering for measuring the electron density and the electron temperature of microwave plasmas produced in helium at the pressures higher than the atmospheric pressure. The electron density decreased while we observed the increase in the electron temperature with the pressure. These are reasonable results by considering the decrease in the reduced electric field, the dominant loss of electrons via three‐body recombination with helium as the third body, and the production of electrons with medium energy via heavy particle collisions at the high gas pressure. The temporal variation of the electron temperature had the rise and the fall time constants of approximately 10 ns. The rapid heating and cooling of the electron temperature are due to the fast energy transfer from electrons to helium because of the high collision frequency in the high‐pressure discharge. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
67.
We have investigated the magnetic properties of iron mixed-valence complexes, (n-CnH2n+1)4N[FeIIFeIII(dto)3] (dto = C2O2S2, n = 3, 5), in which not only a ferromagnetic transition but also a novel charge transfer phase transition (CTPT) take place [1]. This CTPT can be observed under ambient pressure for n = 3, while it appears abruptly above 0.5 GPa for n = 5 [2]. Recently, we have measured the muon spin relaxation (μSR) for the CTPT of n = 3, which revealed the dynamical process of electron-transfer between FeII and FeIII and its frequency was estimated at about 0.1 MHz [3]. To investigate the pressure induced CTPT for n = 5, we carried out the μSR measurement for n = 5 at 150 K between 0.30 and 0.64 GPa with the 4He gas-operated pressure system. The asymmetry of the muon spin relaxation for n = 5 with Cu-Be pressure cell was almost constant up to 0.55 GPa, while it rapidly decreased with increasing pressure above 0.60 GPa. This result shows that the applied pressure causes the spin fluctuation due to the CTPT, which induces the decrease of the asymmetry of muon spin relaxation. This experiment can correctly decide the phase transition pressure from the absence to the appearance of the CTPT for n = 5.  相似文献   
68.
This paper describes the preparation of iron oxide nanoparticles, surface of which was coated with extremely high immobilization stability and relatively higher density of poly(ethylene glycol) (PEG), which are referred to as PEG protected iron oxide nanoparticles (PEG-PIONs). The PEG-PIONs were obtained through alkali coprecipitation of iron salts in the presence of the PEG-poly(4-vinylbenzylphosphonate) block copolymer (PEG-b-PVBP). In this system, PEG-b-PVBP served as a surface coating that was bound to the iron oxide surface via multipoint anchoring of the phosphonate groups in the PVBP segment of PEG-b-PVBP. The binding of PEG-b-PVBP onto the iron oxide nanoparticle surface and the subsequent formation of a PEG brush layer were proved by FT-IR, zeta potential, and thermogravimetric measurements. The surface PEG-chain density of the PEG-PIONs varied depending on the [PEG-b-PVBP]/[iron salts] feed-weight ratio in the coprecipitation reaction. PEG-PIONs prepared at an optimal feed-weight ratio in this study showed a high surface PEG-chain surface density (≈0.8 chainsnm(-2)) and small hydrodynamic diameter (<50 nm). Furthermore, these PEG-PIONs could be dispersed in phosphate-buffered saline (PBS) that contains 10% serum without any change in their hydrodynamic diameters over a period of one week, indicating that PEG-PIONs would provide high dispersion stability under in vivo physiological conditions as well as excellent anti-biofouling properties. In fact we have confirmed the prolong blood circulation time and facilitate tumor accumulation (more than 15% IDg(-1) tumor) of PEG-PIONs without the aid of any target ligand in mouse tumor models. The majority of the PEG-PIONs accumulated in the tumor by 96 h after administration, whereas those in normal tissues were smoothly eliminated by 96 h, proving the enhancement of tumor selectivity in the PEG-PION localization. The results obtained here strongly suggest that originally synthesized PEG-b-PVBP, having multipoint anchoring character by the phosphonate groups, is rational design for improvement in nanoparticle as in vivo application. Two major points, viz., extremely stable anchoring character and dense PEG chains tethered on the nanoparticle surface, worked simultaneously to become PEG-PIONs as an ideal biomedical devices intact for prolonged periods in harsh biological environments.  相似文献   
69.
Copper-catalyzed allylic alkylation of ketene silyl acetals proceeded with excellent γ-E-selectivity. Efficient α-to-γ chirality transfer with anti-selectivity occurred in the reaction of enantioenriched secondary allylic phosphates, affording enantioenriched β-branched γ,δ-unsaturated esters. Excellent functional group compatibility was observed.  相似文献   
70.
Incubation of mouse melanoma B16 cells in fluorous solvents with low boiling point such as perfluoromethylcyclohexane, 1,1,1,3,3,3-hexafluoro-2-propanol, ethylpentafluoropropionate resulted in cell death. However, cells lived up to 2 days in fluorous alcohols such as 2,2,3,3,4,4,5,5-octafluoro-1-pentanol and 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol with relatively higher fluorine content. Remarkably, cells survived deprived of nutrition up to 4 days when incubated in 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-1-hexanol or in 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptanol that have the most number of fluorine atoms (11 and 12, respectively) among the perfluoroalkyl alcohols used, and with boiling points of 128 °C and 169 °C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号